Use the information provided to write the VERTEX FORM equation of each parabola. $y = a(x - h)^2 + k$

14)

15)

Use the information provided to write the STANDARD FORM equation of each parabola. $y = ax^2 + bx + c$

16)

17)

Use the information provided to write the INTERCEPT FORM equation of each parabola. y = a(x - p)(x - q)

18)

19)

State if there appears to be a positive correlation, negative correlation, or no correlation.

20)

21)

22)

USE DESMOS!!!

- a) Create a scatterplot of the data to determine if the relationship is linear or quadratic.
- b) Write the equation of the function that best fits the data.

25)	X	Y	X	Y	X	Y
	10	1.8	60	7.8	100	7.7
	20	4.2	70	8	100	7.9
	30	5.1	70	8.1	100	8
	40	6.7	80	8.2	100	8
	50	7.2	90	8.2	***************************************	

26) The cost of a flight is related to the length of the flight by y = 0.0956x + 21.7 where x is distance in miles y is cost in dollars.

- a) Using this model, what would be the cost of a flight that travels 600 miles? Round your answer to the nearest dollar.
- b) According to the model, how much would a 3550-mile flight cost? Round your answer to the nearest dollar.

27) The height and weight of adults can be related by the equation $y = 10.3x^2 - 63.3x + 170$ where x is height in feet and y is weight in pounds.

- a) Using this model, what would be the weight of someone who is 5.7 ft tall? Round your answer to the nearest tenth.
- b) According to the model, what would be the weight of someone who is 6 ft tall? Round your answer to the nearest tenth.