HOW Reminders

- Preparedness:
- Be in the classroom when the bell rings
- Have something to write with, a calculator, and your notebook

Engagement:

- Have your phone and computer put away

Warm-Up

Find the vertex, axis of symmetry, and its max/min value.

$$
\text { 1) } \begin{aligned}
y & =-\frac{1}{4}(x+7)^{2}-1 \\
& \text { vertex: }(-7,-1) \\
& \text { axis of symmetry: } x=-7 \\
& \max \text { at: } y=-1
\end{aligned}
$$

2) $2 x^{2}+16 x+29$
vertex: $(-4,-3)$
axis of symmetry: $x=-4$
\min at: $y=-3$

2.2 Notes - Part 3

Learning Targets:

- I can find the vertex, axis of symmetry, and x-intercepts of a parabola given its equation in intercept form.
- I can graph a parabola given its equation in intercept form.

Discover it

Algebra 2

Intercept Form
Name
Date \qquad Period \qquad
Graph each equation on Desmos. Record your discoveries. :)

1) $f(x)=2(x-2)(x+1)$

2) $f(x)=-(x+7)(x+5)$

3) $f(x)=2(x-2)(x+1)$

4) $f(x)=-(x+7)(x+5)$

5) $f(x)=-(x+6)(x+3)$

6) $f(x)=\frac{3}{4}(x-7)(x-2)$

7) $y=-(x-1)(x+2)$

8) $y=(x-4)(x+1)$

- Vertex form: $f(x)=-a(x-h)^{2}+k$
- vertex: (h, k)
- axis of symmetry: $x=h$
- Standard form: $f(x)=a x^{2}+b x+c$
- vertex: $x=\frac{-b}{2 a^{\prime}}$, plug in x to get y.

- y-intercept $=c$

Intercept Form:

$f(x)=a(x-p)(x-q)$

Here, p and q are the x-intercepts of the parabola.

The the axis of symmetry is halfway between p and q, so:

$$
x=\frac{p+q}{2}
$$

Properties of the Graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{p})(\boldsymbol{x}-q)$

- Because $f(p)=0$ and $f(q)=0, p$ and q are the x-intercepts of the graph of the function.
- The axis of symmetry is halfway between $(p, 0)$ and $(q, 0)$. So, the axis of symmetry is $x=\frac{p+q}{2}$.
- The parabola opens up when $a>0$ and opens down when $a<0$.

Examples:

1) Graph $f(x)=-2(x+3)(x-1)$. Label the x-intercepts, vertex, and axis of symmetry.

The x-intercepts are: $x=-3$ and $x=1$

So, the axis of symmetry is:

$$
\begin{aligned}
& x=\frac{-3+1}{2} \\
& x=\frac{-2}{2} \\
& x=-1
\end{aligned}
$$

Examples:

1) Graph $f(x)=-2(x+3)(x-1)$. Label the x-intercepts, vertex, and axis of symmetry.

To find the vertex, plug $x=-1$, into the original equation.

$$
\begin{aligned}
& f(-1)=-2(-1+3)(-1-1) \\
& f(-1)=-2(2)(-2) \\
& f(-1)=-4(-2) \\
& f(-1)=8 \longrightarrow \text { Vertex: }(-1,8)
\end{aligned}
$$

Examples:

2) Graph $f(x)=-(x+1)(x+5)$. Label the x-intercepts, vertex, and axis of symmetry.
3) Graph $g(x)=\frac{1}{4}(x-6)(x-2)$. Label the x-intercepts, vertex, and axis of symmetry.

Examples:

2) Graph $f(x)=-(x+1)(x+5)$. Label the x-intercepts, vertex, and axis of symmetry.
x-intercepts: $x=-1, x=-5$
vertex: $(-3,4)$

$$
\begin{aligned}
f(-3) & =-(-3+1)(-3+5) \\
& =-(-2)(2) \\
& =(2)(2) \\
& =4
\end{aligned}
$$

axis of symmetry: $x=-3$

$$
x=\frac{-1+-5}{2}=\frac{-6}{2}=-3
$$

Examples:

3) Graph $g(x)=\frac{1}{4}(x-6)(x-2)$. Label the x-intercepts, vertex, and axis of symmetry.
x-intercepts: $x=6, x=2$
vertex: $(4,-1)$

$$
\begin{aligned}
f(4)= & \frac{1}{4}(4-6)(4-2) \\
& =\frac{1}{4}(-2)(2) \\
& =\left(-\frac{1}{2}\right) \\
& =-1
\end{aligned}
$$

axis of symmetry: $x=4$

$$
x=\frac{6+2}{2}=\frac{8}{2}=4
$$

