WARM-UP

Factor each completely.

1) $n^{2}+10 n+24$
2) $m^{2}-15 m+56$
3) $2 n^{2}+17 n+35$
4) $3 x^{2}+29 x+56$

WARM-UP

Factor each completely.

1) $n^{2}+10 n+24$

$$
(n+6)(n+4)
$$

3) $2 n^{2}+17 n+35$
$(2 n+7)(n+5)$
4) $m^{2}-15 m+56$
$(m-8)(m-7)$
5) $3 x^{2}+29 x+56$

$$
(3 x+8)(x+7)
$$

COMPLETING THE SQUARE

3.3 Notes

WHY WE COMPLETE THE SQUARE...

The expression $x^{2}-16 x+64$ is called a perfect square trinomial because you can factor it to be $(x-8)(x-8)$ or $(x-8)^{2}$.

If you have an expression missing a c-value, such as $x^{2}+14 x$, you can add in a c-value to make it factorable.

STEPS TO COMPLETE THE SQUARE:

Step 1: Find half of b.

Step 2: Square that number.

Step 3: Add the new number on both sides of the equation.

Step 4: Factor the left side and solve.

EXAMPLE I: Solve $x^{2}+12 x-85=0$ by completing the square.
You can't factor $x^{2}+12 x-85=0 \ldots$ yet.

$$
\begin{array}{ll}
x^{2}+12 x=85 & \text { Step 1: Find half of } b . \\
& \frac{12}{2}=6 \\
& \begin{array}{l}
\text { Step 2: Square that } \\
\text { number. }
\end{array}
\end{array}(6)^{2}=36
$$

Step 3: Add the new number on both sides of the equation.

EXAMPLE I: Solve $x^{2}+12 x-85=0$ by completing the square.

$$
\begin{aligned}
& x^{2}+12 x+36=85+36 \\
& x^{2}+12 x+36=121 \quad \text { Step 4: Factor the left side } \\
& \text { and solve. } \\
& (x+6)(x+6)=121 \\
& (x+6)^{2}=121 \\
& x+6= \pm 11 \\
& x+6=11 \\
& x+6=-11 \\
& x=5 \\
& x=-17
\end{aligned}
$$

EXAMPLE 2: Solve $x^{2}-10 x+7=0$ by completing the square.

$$
\begin{array}{ll}
x^{2}-10 x=-7 & \text { Step 1: Find half of } b . \\
& \frac{-10}{2}=-5 \\
& \begin{array}{l}
\text { Step 2: Square that } \\
\text { number. }
\end{array}
\end{array}(-5)^{2}=25
$$

Step 3: Add the new number on both sides of the equation.

EXAMPLE 2: Solve $x^{2}-10 x+7=0$ by completing the square.

$$
\begin{array}{rlrl}
x^{2}-10 x+25 & =-7+25 & & \\
x^{2}-10 x+25 & =18 & & \\
(x-5)(x-5) & =18 & & \\
(x-5)^{2} & =18 & & \\
x-5 & = \pm \sqrt{18} & & \\
x-5 & = \pm \sqrt{9 * 2} & & \\
x-5 & = \pm 3 \sqrt{2} \quad x= \pm 3 \sqrt{2}+5
\end{array}
$$

EXAMPLE 3: Solve $x^{2}-4 x-8=0$ by completing the square.

$$
x^{2}-4 x=8
$$

$$
\text { Step I: Find half of } b . \quad \frac{-4}{2}=-2
$$

Step 2: Square that $(-2)^{2}=4$ number.

Step 3: Add the new
$x^{2}-4 x+4=8+4$
number on both
sides of the equation.

EXAMPLE 3: Solve $x^{2}-4 x-8=0$ by completing the square.

$$
\begin{aligned}
x^{2}-4 x+4=8+4 & \\
x^{2}-4 x+4=12 & \text { Step 4: Factor the left side } \\
(x-2)(x-2)=12 & \\
(x-2)^{2}=12 & \\
x-2= \pm \sqrt{12} & \\
x-2= \pm \sqrt{4 * 3} & \\
x-2= \pm 2 \sqrt{3} & \longrightarrow x= \pm 2 \sqrt{3}+2
\end{aligned}
$$

EXAMPLE 4: Solve $x^{2}+8 x-5=0$ by completing the square.

$$
x^{2}+8 x=5
$$

Step 1: Find half of $b . \quad \frac{8}{2}=4$

Step 2: Square that $\quad(4)^{2}=16$
number.

Step 3: Add the new

$$
x^{2}+8 x+16=5+16
$$

sides of the equation.

EXAMPLE 4: Solve $x^{2}+8 x-5=0$ by completing the square.

$$
\begin{aligned}
x^{2}+8 x+16 & =5+16 \\
x^{2}+8 x+16 & =21 \\
(x+4)(x+4) & =21 \\
(x+4)^{2} & =21 \\
x+4 & = \pm \sqrt{21} \\
x & = \pm \sqrt{21}-4
\end{aligned}
$$

Step 4: Factor the left side and solve.

EXAMPLE 5: Solve $x^{2}+6 x+4=0$ by completing the square.

$$
x^{2}+6 x=-4
$$

Step 1: Find half of $b . \quad \frac{6}{2}=3$

Step 2: Square that $\quad(3)^{2}=9$ number.

Step 3: Add the new
$x^{2}+6 x+9=-4+9$
number on both
sides of the equation.

EXAMPLE 5: Solve $x^{2}+6 x+4=0$ by completing the square.

$$
\begin{gathered}
x^{2}+6 x+9=-4+9 \\
x^{2}+6 x+9=5 \\
(x+3)(x+3)=5
\end{gathered}
$$

Step 4: Factor the left side and solve.

$$
\begin{aligned}
(x+3)^{2} & =5 \\
x+3 & = \pm \sqrt{5} \\
x & = \pm \sqrt{5}-3
\end{aligned}
$$

