WARM-UP

Factor each completely.

1)
$$n^2 + 10n + 24$$
 2) $m^2 - 15m + 56$

3) $2n^2 + 17n + 35$

4) $3x^2 + 29x + 56$

WARM-UP

Factor each completely.

1)
$$n^{2} + 10n + 24$$

 $(n + 6)(n + 4)$
2) $m^{2} - 15m + 56$
 $(m - 8)(m - 7)$

3) $2n^2 + 17n + 35$ (2n + 7)(n + 5) 4) $3x^2 + 29x + 56$ (3x + 8)(x + 7)

COMPLETING THE SQUARE

3.3 Notes

WHY WE COMPLETE THE SQUARE...

The expression $x^2 - 16x + 64$ is called a *perfect square trinomial* because you can factor it to be (x - 8)(x - 8) or $(x - 8)^2$.

If you have an expression missing a *c*-value, such as $x^2 + 14x$, you can add in a *c*-value to make it factorable.

STEPS TO COMPLETE THE SQUARE:

<u>Step I</u>: Find half of *b*.

<u>Step 2</u>: Square that number.

<u>Step 3</u>: Add the new number on both sides of the equation.

Step 4: Factor the left side and solve.

EXAMPLE 1:Solve
$$x^2 + 12x - 85 = 0$$
 by completing the square.You can't factor $x^2 + 12x - 85 = 0...$ yet. $x^2 + 12x = 85$ Step 1: Find half of b. $\frac{12}{2} = 6$ Step 2: Square that
number. $x^2 + 12x + 36 = 85 + 36$ Step 3: Add the new
number on both
sides of the equation.

EXAMPLE I:	Solve $x^2 + 12x$	c - 85 = 0 b	by completing the square.			
$x^2 + 12x + 36 = 85 + 36$						
$x^2 + 12x + 36 = 121$			<u>Step 4</u> : Factor the left side and solve.			
(x+6)(x+6) = 121						
$(x+6)^2 = 121$						
$x + 6 = \pm 11$						
<i>x</i> + 6	= 11	x + 6 = -	-11			
x	= 5	x = -	-17			

EXAMPLE 2: Solve $x^2 - 10x + 7 = 0$ by completing the square.

$$x^2 - 10x = -7$$
 Step I: Find half of b. $\frac{-10}{2} = -5$

Step 2: Square that number.

 $(-5)^2 = 25$

 $x^2 - 10x + 25 = -7 + 25$

Step 3: Add the new number on both sides of the equation. EXAMPLE 2: Solve $x^2 - 10x + 7 = 0$ by completing the square.

$$x^{2} - 10x + 25 = -7 + 25$$

$$x^{2} - 10x + 25 = 18$$

$$(x - 5)(x - 5) = 18$$

$$(x - 5)^{2} = 18$$

$$x - 5 = \pm\sqrt{18}$$

$$x - 5 = \pm\sqrt{9 * 2}$$

$$x - 5 = \pm 3\sqrt{2} \longrightarrow x = \pm 3\sqrt{2} + 5$$

side

Solve $x^2 - 4x - 8 = 0$ by completing the square. EXAMPLE 3:

$$x^2 - 4x = 8$$
 Step I: Find half of b. $\frac{-4}{2} = -2$

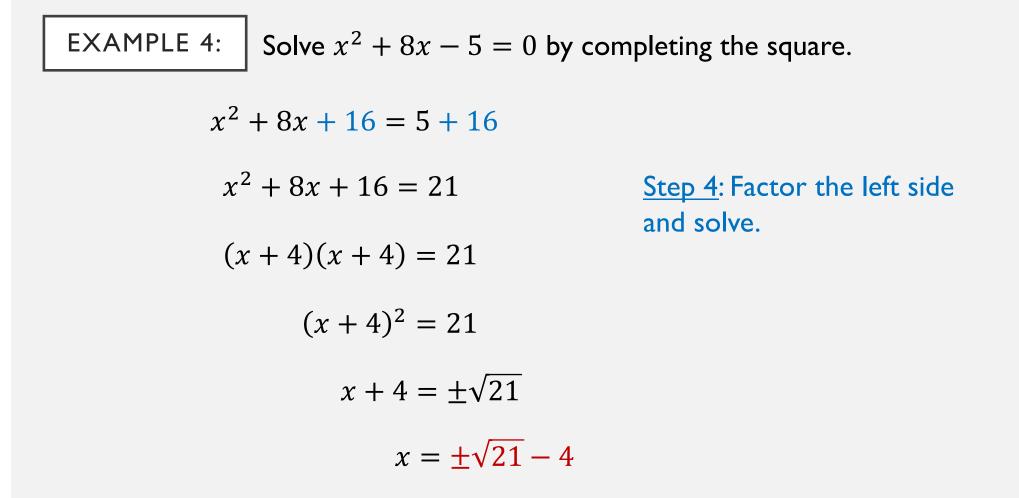
Step 2: Square that number.

$$(-2)^2 = 4$$

$$x^2 - 4x + 4 = 8 + 4$$

Step 3: Add the new number on both sides of the equation.

EXAMPLE 3:	PLE 3: Solve $x^2 - 4x - 8 = 0$ by completing the square.		
x	$x^2 - 4x + 4 = 8 + 4$		
x^2	$x^2 - 4x + 4 = 12$	<u>Step 4</u> : Factor the left side and solve.	
(x	(x-2)(x-2) = 12		
	$(x-2)^2 = 12$		
	$x - 2 = \pm \sqrt{12}$		
	$x - 2 = \pm \sqrt{4 * 3}$		
	$x - 2 = \pm 2\sqrt{3} $	$\longrightarrow x = \pm 2\sqrt{3} + 2$	


EXAMPLE 4: Solve $x^2 + 8x - 5 = 0$ by completing the square.

$$x^2 + 8x = 5$$
 Step I: Find half of b. $\frac{8}{2} = 4$

<u>Step 2</u>: Square that $(4)^2 = 16$ number.

 $x^2 + 8x + 16 = 5 + 16$

Step 3: Add the new number on both sides of the equation.

EXAMPLE 5: Solve $x^2 + 6x + 4 = 0$ by completing the square.

$$x^2 + 6x = -4$$
 Step I: Find half of b. $\frac{6}{2} = 3$

Step 2: Square that $(3)^2 = 9$ number.

$$x^2 + 6x + 9 = -4 + 9$$

<u>Step 3</u>:Add the new number on both sides of the equation.

	EXAMPLE 5:	Solve $x^2 + 6x + 4 = 0$ by	completing the square.		
$x^2 + 6x + 9 = -4 + 9$					
	$x^{2} + 6x + 9 = 5$ $(x + 3)(x + 3) = 5$		Step 4: Factor the left side		
			and solve.		
		$(x+3)^2 = 5$			
		$x + 3 = \pm \sqrt{5}$			