Warm-Up

What is the *terminal side* of an angle?
The ray that "opens", creating the angle.

2) What does it mean if two angles are *coterminal*?

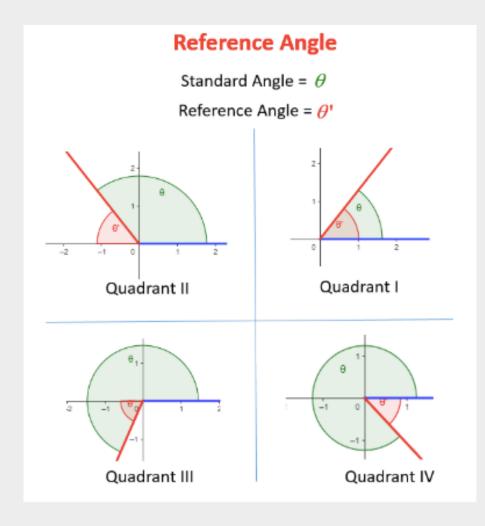
They have the same initial and terminal sides.

3) Can an angle measured in degrees be coterminal with an angle measured in radians? Yes. 4) Factor: $8x^2 - 51x + 18$ (x - 6)(8x - 3)

5) Factor: $27x^2 - 108x + 96$

3(3x-8)(3x-4)

7-4 Notes


Reference Angles

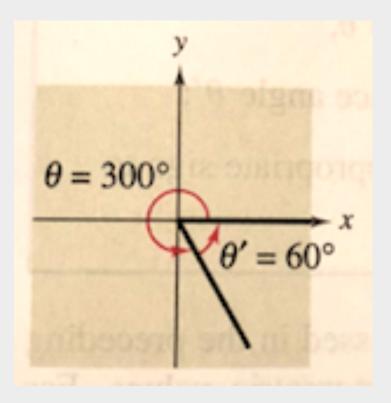
Learning Targets:

- To evaluate trig functions of any angle
- Use reference angles to evaluate trig functions.
- Evaluate trig functions of real number.

Reference Angles

Let θ be an angle in standard position. Its *reference angle* is the acute angle θ' formed by the terminal side of θ and the horizontal axis.

If θ is an angle in standard position, its reference angle θ' is the acute angle formed by the terminal side of θ and the x-axis. The reference angle θ' for any angle θ , $0^{\circ} < \theta < 360^{\circ}$ or $0 < \theta < 2\pi$, is defined as follows.

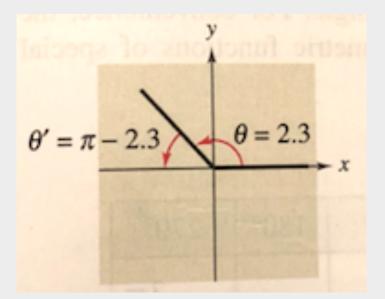

Example 1: Find the reference angle θ' for:

a) $\theta = 300^{\circ}$

300° lies in Quadrant 4.

The angle it makes with the x-axis is:

 $\theta' = 360^{\circ} - 300^{\circ} = 60^{\circ}$

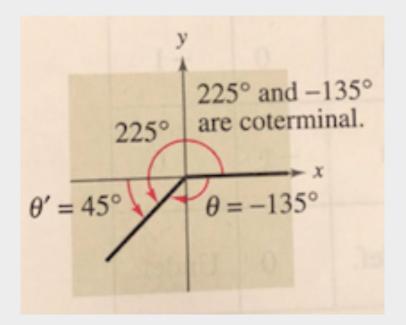


Example 1: Find the reference angle θ' for:

b) $\theta = 2.3$ radians

2.3 radians is between $\frac{\pi}{2}$ and π , so it lies in quadrant 2. So:

 $\theta' = \pi - 2.3 \approx 0.8416$



Example 1: Find the reference angle θ' for:

c) $\theta = -135^{\circ}$

 -135° is coterminal with 225° , which lies in Quadrant 3. So:

 $\theta' = 225^{\circ} - 180^{\circ} = 45^{\circ}$

