4.8 Notes Analyzing Graphs of Polynomial Functions

Learning Targets:

- I can find turning points and identify local maximums and local minimums of graphs and polynomial functions.
- I can identify even and odd functions

<u>Zeros</u>

Just like before, the **zeros** of a polynomial are its *x*-intercepts.

Here, the zeros are -3 and 2.

Turning Points

Polynomial functions have **turning points**, where the function changes from decreasing to increasing, or increasing to decreasing.

Think of it like a rollercoaster going up and down.

Turning Points

These turning points are also called **local minimums** or **local maximums**.

Another name for them are **relative minimums** or **relative maximums**.

Examples:

Find the local max and local min points of the function.

Local max: (-2, 6) Local min: (0, 2)

Examples:

Find the local max and local min points of the function.

Local max:
$$(-1.3, -0.4)$$

 $(0.4, -1.8)$
Local min: $(-0.5, -2.1)$
 $(1.3, -3.5)$

Even and Odd Functions

For a function to be even or odd, it must have symmetry through the origin.

• Even functions , have *reflectional symmetry*.

• Odd functions , have *rotational symmetry*.

Even and Odd Functions

In an even function, every point
(x, y) has a matching point (-x, y).

Examples: (4,3) & (-4,3)(2,9) & (-2,9)

In an odd function, every point (x, y)
has a matching point (-x, -y).

Examples:
$$(4, 3) \& (-4, -3)$$

 $(2, 9) \& (-2, -9)$