4.8 Notes
 Analyzing Graphs of Polynomial Functions

Learning Targets:

- I can find turning points and identify local maximums and local minimums of graphs and polynomial functions.
- I can identify even and odd functions

Zeros

Just like before, the zeros of a polynomial are its x-intercepts.

Here, the zeros are -3 and 2 .

Turning Points

Polynomial functions have turning points, where the function changes from decreasing to increasing, or increasing to decreasing.

Think of it like a rollercoaster going up and down.

Turning Points

These turning points are also called local minimums or local maximums.
Another name for them are relative minimums or relative maximums.

Examples:

Find the local max and local min points of the function.

Local max: $(-2,6)$
Local min: (0,2)

Examples:

Find the local max and local min points of the function.

$$
\begin{array}{r}
\text { Local max: } \\
(-1.3,-0.4) \\
(0.4,-1.8)
\end{array}
$$

Local min: $(-0.5,-2.1)$

$$
(1.3,-3.5)
$$

Even and Odd Functions

Even Function

Odd Function

For a function to be even or odd, it must have symmetry through the origin.

- Even functions, have reflectional symmetry.
- Odd functions, have rotational symmetry.

Even and Odd Functions

Even Function

- In an even function, every point (x, y) has a matching point $(-x, y)$.

Examples: $(4,3) \&(-4,3)$

$$
(2,9) \&(-2,9)
$$

Odd Function

- In an odd function, every point (x, y) has a matching point $(-x,-y)$.

Examples: $(4,3) \&(-4,-3)$
$(2,9) \&(-2,-9)$

