HOW Reminders

- Preparedness:
- Be in the classroom when the bell rings
- Have something to write with, a calculator, and your notebook

Engagement:

- Have your phone and computer put away

Warm-Up

1) $-8(x-2)-2 x=-2-7 x$ $x=6$
2) $28-3 x=-7-5(-6 x-7)$

$$
x=0
$$

2.2 Notes - Part 2 Properties of Parabolas

Learning Targets:

- I can find the maximum and minimum values of quadratic functions.
- I can graph quadratic functions using x-intercepts.
- I can solve real-life problems.

Exploration

Go to Desmos. With a partner, graph the following quadratic functions and write down/discuss anything you notice about how the equation is related to the graph.

Algebra 2
2.2 Exploration

Name \qquad

Go to Desmos. With a partner, graph the following quadratic functions and write down/discuss anything you notice about how the equation is related to the graph.

1) $y=x^{2}-2 x+1$

2) $y=-x^{2}-4 x-7$

3) $y=-2 x^{2}+4 x-5$

4) $y=3 x^{2}+12 x+7$

5) $y=x^{2}-2 x+1$

6) $y=-2 x^{2}+4 x-5$

7) $y=-x^{2}-4 x-7$

8) $y=3 x^{2}+12 x+7$

9) $y=\frac{1}{3} x^{2}-2 x+8$

10) $y=-x^{2}+2 x-4$

Standard Form:

- Quadratic functions can also be written in standard form: $f(x)=a x^{2}+b x+c$.
- $\quad c$ is the y-intercept.
- When your function is in standard form, you have to solve to find the vertex:
- x-coordinate $=\frac{-b}{2 a}$
- When you get your x, plug it into your original function to get the y.

Properties of the Graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b x}+\boldsymbol{c}$

$$
y=a x^{2}+b x+c, a>0 \quad y=a x^{2}+b x+c, a<0
$$

- The parabola opens up when $a>0$ and opens down when $a<0$.
- The graph is narrower than the graph of $f(x)=x^{2}$ when $|a|>1$ and wider when $|a|<1$.
- The axis of symmetry is $x=-\frac{b}{2 a}$ and the vertex is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$.
- The y-intercept is c. So, the point $(0, c)$ is on the parabola.

Example 2:

Graph $f(x)=3 x^{2}-6 x+1$. Label the vertex and axis of symmetry.

Use $x=\frac{-b}{2 a}$ to find the x-coordinate of the vertex.

$$
\begin{array}{r}
a=3, b=-6, c=1 \\
x=\frac{-b}{2 a}=\frac{-(-6)}{2(3)}=\frac{6}{6}=1
\end{array}
$$

Example 2:

Graph $f(x)=3 x^{2}-6 x+1$. Label the vertex and axis of symmetry. Now plug in your $x=1$ to find the y.

$$
\begin{aligned}
f(1) & =3 x^{2}-6 x+1 \\
& =3(1)^{2}-6(1)+1 \\
& =3(1)-6+1 \\
& =3-6+1 \\
& =-3+1 \\
& =-2 \quad \longrightarrow(1,-2)
\end{aligned}
$$

Example 2:

Graph $f(x)=3 x^{2}-6 x+1$. Label the vertex and axis of symmetry.

Since its vertex is $(1,-2)$, the axis of symmetry is $x=1$.

Example 2:

Graph $f(x)=3 x^{2}-6 x+1$. Label the vertex and axis of symmetry.

Now look at your equation to find the y-intercept.
c is the y-intercept, so the y-intercept $=1$.

Work with a partner:

Identify the vertex and axis of symmetry of each.

1) $y=2 x^{2}+16 x+27$ $(-4,-5) \quad$ axis: $x=-4$
2) $y=4 x^{2}-72 x+324$ $(9,0) \quad$ axis: $x=9$

$$
\text { 5) } y=\frac{-x^{2}-10 x-17}{(-5,8) \quad \text { axis: } x=-5}
$$

6) $y=2 x^{2}+24 x+75$ $(-6,3) \quad$ axis: $x=-6$
$(0,-4) \quad$ axis: $x=0$
7) $y=3 x^{2}+16 x+27$ $(-2.67,5.67)$

Minimum and Maximum Values

For the quadratic function $f(x)=a x^{2}+b x+c$, the y-coordinate of the vertex is the minimum value of the function when $a>0$ and the maximum value when $a<0$.

- Minimum value: $f\left(-\frac{b}{2 a}\right)$
- Domain: All real numbers
- Range: $y \geq f\left(-\frac{b}{2 a}\right)$
- Maximum value: $f\left(-\frac{b}{2 a}\right)$
- Domain: All real numbers
- Decreasing to the left of $x=-\frac{b}{2 a}$
- Range: $y \leq f\left(-\frac{b}{2 a}\right)$
- Increasing to the right of $x=-\frac{b}{2 a}$
- Increasing to the left of $x=-\frac{b}{2 a}$
- Decreasing to the right of $x=-\frac{b}{2 a}$

Your Turn!

Algebra 2
Standard Form
Identify the vertex, axis of symmetry, $\min /$ max value, y-intercept, and decreasing/increasing values of each. Then sketch the graph.

1) $f(x)=2 x^{2}+8 x+6$

2) $f(x)=x^{2}+6 x+3$

3) $f(x)=-x^{2}+2 x+3$

