Warm-Up

Learning Targets:

- I can divide polynomials using synthetic division
- I can describe the end behavior of the graphs of polynomial functions

Synthetic Division

- *Synthetic Division* is a short-cut method to dividing polynomials.
- Problem set-up: (Big polynomial) $\div (x k)$

coefficients

Example 2:
$$(3x^3 - 2x^2 + 2x - 5) \div (x + 1)$$

 $\frac{k - value}{k} = -1$

Example 3:
$$(x^3 - 3x^2 - 7x + 6) \div (x - 2)$$

 $k - value = 2$

<u>Example 4</u>: $(2x^3 - x - 7) \div (x + 3)$ *k* - *value* = -3

End Behavior

The **end behavior** of a graph talks about which way y is headed as x goes towards either positive infinity $(+\infty)$ or negative infinity $(-\infty)$.

Basically:

as x goes to the right, is y going up or down? as $x \to +\infty$, is $y \to +\infty$ or is $y \to -\infty$ as x goes to the left, is y going up or down? as $x \to -\infty$, is $y \to +\infty$ or is $y \to -\infty$

For the graph of a polynomial function, the end behavior is determined by the function's <u>degree</u> and the <u>sign of its leading coefficient</u>.

End Behavior with Parabolas:

Example: $y = x^2$

Degree: 2 (even number)

Leading Coefficient sign: +

as x goes to the right, y goes up as $x \to +\infty$, $y \to +\infty$

as x goes to the left, y goes up as $x \to -\infty$, $y \to +\infty$

End Behavior with Parabolas:

Example: $y = -x^2$

Degree: 2 (even number) Leading Coefficient sign: -

as x goes to the right, y goes down as $x \to +\infty$, $y \to -\infty$

as x goes to the left, y goes down as $x \to -\infty$, $y \to -\infty$

End Behavior of Polynomial Functions

Degree: odd Leading coefficient: positive

$$f(x) \rightarrow -\infty$$

Degree: odd Leading coefficient: negative

$$f(x) \rightarrow +\infty$$
as $x \rightarrow -\infty$

$$f(x) \rightarrow -\infty$$
as $x \rightarrow +\infty$

Degree: even Leading coefficient: positive

Degree: even Leading coefficient: negative

Examples:

In Exercises 7 and 8, describe the end behavior of the graph of the function.

7.
$$f(x) = -3x^6 + 4x^2 - 3x + 6$$

Degree: 6: even

LC sign: negative

as
$$x \to +\infty$$
, $y \to -\infty$
as $x \to -\infty$, $y \to -\infty$

8.
$$f(x) = \frac{4}{5}x + 6x + 3x^5 - 3x^3 - 2$$

 $f(x) = 3x^5 - 3x^3 + 6\frac{4}{5}x - 2$

Degree: 5: odd
LC sign: positive
as
$$x \to +\infty$$
, $y \to +\infty$
as $x \to -\infty$, $y \to -\infty$