Warm-Up

Algebra 2 - Unit 3
Warm-Up
Divide.
$\left(6 r^{3}+21 r^{2}+11 r-7\right)+(r+2)$
Sketch a general graph for each polynomial function.
2) $y=8 x^{12}-7 x^{10}+3 x^{7}-5$

3) $y=-9 x^{14}+7 x^{11}-4 x^{3}+3 x$
4) $y-5 x^{7}+6 x^{4}-2 x^{2}-12$

ame each polynomial by degree and number of term

6) 7
A) linear monomial
B) linear constant
D) 7 th degree monomial
7) $-6 x^{4}+9 x^{3}-x-10$
A) fourth degree polynomial with four term
A) fourth degree polynom
B) fourth degree trinomial
B) fourth degree rrinomial
D) fifth degree binomial

Name Date \qquad Period
7) $5 n^{5}-3 n^{4}-3 n^{3}$
A) constant binomial
C) fifth degree trinomial
D) cubic polynomial with five terms
9) $-2 x^{2}+4 x$
A) quadratic polynomial with 4 terms B) quadratic trinomial
B) quadratic trinomial
D) linear binomial

Synthetic Division \& End Behavior
 Learning Targets:
 - I can divide polynomials using synthetic division
 - I can describe the end behavior of the graphs of polynomial functions

Synthetic Division

- Synthetic Division is a short-cut method to dividing polynomials.
- Problem set-up: (Big polynomial) $\div(x-k)$

Example 1: $\left(-x^{3}+4 x^{2}+9\right) \div(x-3)$ $k-$ value $=3$

$$
-x^{2}+x+3+\frac{18}{x-3}
$$

Example 2: $\left(3 x^{3}-2 x^{2}+2 x-5\right) \div(x+1)$

$$
3 x^{2}-5 x+7+\frac{-12}{x+1}
$$

Example 3: $\left(x^{3}-3 x^{2}-7 x+6\right) \div(x-2)$ $k-$ value $=2$

$$
x^{2}-x-9+\frac{-12}{x-2}
$$

Example 4: $\left(2 x^{3}-x-7\right) \div(x+3) \quad k-$ value $=-3$

$$
2 x^{2}-6 x+17+\frac{-58}{x+3}
$$

End Behavior

The end behavior of a graph talks about which way y is headed as x goes towards either positive infinity $(+\infty)$ or negative infinity $(-\infty)$.

Basically:
as x goes to the right, is y going up or down?
as $x \rightarrow+\infty, \quad$ is $y \rightarrow+\infty$ or is $y \rightarrow-\infty$
as x goes to the left, is y going up or down?
as $x \rightarrow-\infty, \quad$ is $y \rightarrow+\infty$ or is $y \rightarrow-\infty$

For the graph of a polynomial function, the end behavior is determined by the function's degree and the sign of its leading coefficient.

End Behavior with Parabolas:

$$
\text { Example: } y=x^{2}
$$

Degree: 2 (even number)
Leading Coefficient sign: +
as x goes to the right, y goes up
as $x \rightarrow+\infty, y \rightarrow+\infty$
as x goes to the left, y goes up
as $x \rightarrow-\infty, y \rightarrow+\infty$

End Behavior with Parabolas:

$$
\text { Example: } y=-x^{2}
$$

Degree: 2 (even number)
Leading Coefficient sign: -
as x goes to the right, y goes down
as $x \rightarrow+\infty, y \rightarrow-\infty$
as x goes to the left, y goes down
as $x \rightarrow-\infty, y \rightarrow-\infty$

End Behavior of Polynomial Functions

Degree: odd
Leading coefficient: positive

Degree: even
Leading coefficient: positive

Degree: odd
Leading coefficient: negative

Degree: even
Leading coefficient: negative

Examples:

In Exercises 7 and 8, describe the end behavior of the graph of the function.
7. $f(x)=-3 x^{6}+4 x^{2}-3 x+6$

Degree: 6: even

LC sign: negative

as $x \rightarrow+\infty, y \rightarrow-\infty$
as $x \rightarrow-\infty, y \rightarrow-\infty$
8. $f(x)=\frac{4}{5} x+6 x+3 x^{5}-3 x^{3}-2$ $f(x)=3 x^{5}-3 x^{3}+6 \frac{4}{5} x-2$

Degree: 5: odd

LC sign: positive

$$
\begin{aligned}
& \text { as } x \rightarrow+\infty, y \rightarrow+\infty \\
& \text { as } x \rightarrow-\infty, y \rightarrow-\infty
\end{aligned}
$$

