From Example 4 and the definitions of $\sin \theta$ and $\cos \theta$, you can see that the sine and cosine functions repeat their values every 360° or 2π radians. Formally this means that for all θ :

$$\sin (\theta + 360^{\circ}) = \sin \theta$$

$$\cos (\theta + 360^{\circ}) = \cos \theta$$

$$\sin (\theta + 2\pi) = \sin \theta$$

$$\cos (\theta + 2\pi) = \cos \theta$$

We summarize these facts by saying that the sine and cosine functions are periodic and that they have a fundamental period of 360°, or 2π radians. It is the periodic nature of these functions that makes them useful in describing many repetitive phenomena such as tides, sound waves, and the orbital paths of satellites.

CLASS EXERCISES

Find $\sin \theta$ and $\cos \theta$.

- 4. State whether each expression is positive or negative.
 - a. sin 165°
- **b.** sin 265°
- c. cos 210°
- d. cos 310°

- e. $\sin \frac{5\pi}{6}$
- f. $\cos \frac{5\pi}{6}$
- g. $\sin \frac{4\pi}{3}$
- h. $\cos \frac{5\pi}{3}$

- i. sin 2
- j. cos 2
- k. sin 4
- 1. cos 4

- 5. Does $\cos \theta$ increase or decrease as:
 - a. θ increases from 0° to 90°? decrease
 - c. θ increases from 180° to 270° ?
- **b.** θ increases from 90° to 180°?
- d. θ increases from 270° to 360°?

- 6. Answer Exercise 5 for $\sin \theta$.
- 7. Use the unit circle to justify the fact that for all θ :

$$(\cos \theta)^2 + (\sin \theta)^2 = 1$$

- 8. There are infinitely many values of θ for which $\cos \theta = 0$. Name several.
- **9.** a. Explain the meaning of $\theta = 45^{\circ} + n \cdot 360^{\circ}$, where *n* is an integer.
 - **b.** What is the equivalent statement if θ is expressed in radians?

WRITTEN EXERCISES

Find the value of each expression without using a calculator or table.

2. a.
$$\sin (-90^{\circ})$$

b.
$$\cos (-90^{\circ})$$

c.
$$\sin \frac{3\pi}{2}$$

d.
$$\cos \frac{\pi}{2}$$

3. a.
$$\sin (-\pi)$$

b.
$$\cos \pi$$

d
$$\cos\left(-3\pi\right)$$

4. a. $\cos 2\pi$

b.
$$\sin\left(-\frac{\pi}{2}\right)$$

c.
$$\sin 3\pi$$

d.
$$\cos\left(-\frac{3\pi}{2}\right)$$

Name each quadrant described.

5. a.
$$\sin \theta > 0$$
 and $\cos \theta < 0$

b.
$$\sin \theta < 0$$
 and $\cos \theta < 0$

6. a.
$$\sin \theta < 0$$
 and $\cos \theta > 0$

b.
$$\sin \theta > 0$$
 and $\sin (90^{\circ} + \theta) > 0$

Without using a calculator or table, solve each equation for all θ in radians.

7. a.
$$\sin \theta = 1$$

b.
$$\cos \theta = -1$$

c.
$$\sin \theta = 0$$

d.
$$\sin \theta = 2$$

8. a.
$$\cos \theta = 1$$

b.
$$\sin \theta = -1$$

c.
$$\cos \theta = 0$$

d.
$$\cos \theta = -3$$

Without using a calculator or table, state whether each expression is positive, negative, or zero.

9. a.
$$\sin 4\pi$$

b.
$$\cos \frac{7\pi}{6}$$

c.
$$\sin\left(-\frac{\pi}{4}\right)$$

d.
$$\cos \frac{3\pi}{4}$$

10. a.
$$\cos 3\pi$$

b.
$$\sin \frac{2\pi}{3}$$

c.
$$\sin \frac{11\pi}{6}$$

d.
$$\cos\left(-\frac{\pi}{2}\right)$$

d.
$$\sin (-210^{\circ})$$

d.
$$\sin (-315^{\circ})$$

13. a.
$$\sin \frac{7\pi}{4}$$

b.
$$\sin\left(-\frac{\pi}{6}\right)$$

c.
$$\cos \frac{3\pi}{2}$$

d.
$$\cos \frac{\pi}{3}$$

14. **a.**
$$\cos\left(-\frac{\pi}{3}\right)$$

b.
$$\sin \frac{\pi}{6}$$

c.
$$\sin \frac{5\pi}{4}$$

d.
$$\cos \frac{7\pi}{4}$$

b. $\sin (-1^{\circ})$

d.
$$\sin (-270^{\circ})$$

d. cos 540°

Find
$$\sin \theta$$
 and $\cos \theta$.

