HOW Reminders

- Preparedness:
- Be in the classroom when the bell rings
- Have something to write with, a calculator, and your notebook

Engagement:

- Have your phone and computer put away

Warm-Up

Wait for it...you'll love it.

In the meantime, have your homework out and ready to be checked.

7-3 Notes

When the $r \neq 1$.

Learning Targets:

- To evaluate trig functions of any angle
- Use reference angles to evaluate trig functions.
- Evaluate trig functions of real number.

So many circles

The Unit Circle

- Radius $=1$
- $\cos \theta=x$-coordinate
- $\sin \theta=y$-coordinate
- $\tan \theta=\frac{y}{x}$

Not the Unit Circle

- Radius $\neq 1$
- $\cos \theta=$???
- $\sin \theta=$???
- $\tan \theta=$???

Not the Unit Circle

Use your given points to come up with a general rule for finding $\cos \theta, \sin \theta$, and $\tan \theta$ when we're NOT dealing with the Unit Circle.
1)

Beyond the Unit Circle...

When we're finding values of trig functions beyond the unit circle $(r \neq 1)$, then:

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

Example 1:

Let $(-3,4)$ be a point on the terminal side of θ. Find the sine, cosine, and tangent of θ.

Example 1:

Let $(-3,4)$ be a point on the terminal side of θ. Find the sine, cosine, and tangent of θ.

Let's make a right triangle from this point.

We know the legs have lengths 3 and 4 (from the coordinate of our point).

Example 1:

Let $(-3,4)$ be a point on the terminal side of θ. Find the sine, cosine, and tangent of θ.

If we drew a circle whose center was the origin and had our coordinate ($-3,4$) on its edge, the hypotenuse of our triangle would be the radius of the circle.

Example 1:

Let $(-3,4)$ be a point on the terminal side of θ. Find the sine, cosine, and tangent of θ.

We can use the Pythagorean Theorem to find the length of the hypotenuse.

$$
\begin{aligned}
3^{2}+4^{2} & =r^{2} \\
9+16 & =r^{2} \\
25 & =r^{2} \\
5 & =r
\end{aligned}
$$

Example 1:

Let $(-3,4)$ be a point on the terminal side of θ. Find the sine, cosine, and tangent of θ.

$$
\begin{aligned}
& \sin \theta=\frac{4}{5} \\
& \cos \theta=\frac{-3}{5} \\
& \tan \theta=\frac{-4}{3}
\end{aligned}
$$

Example 2:

Given $\tan \theta=-\frac{5}{4}$ and $\cos \theta>0$, find $\sin \theta$ and $\sec \theta$.

First...where would this point be in the coordinate plane?

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{y}{x} \rightarrow \frac{-y}{x}=\frac{-5}{4}
$$

So, our point has the coordinate $(4,-5)$.

Example 2:

Given $\tan \theta=-\frac{5}{4}$ and $\cos \theta>0$, find $\sin \theta$ and $\sec \theta$.
To find $\sin \theta$, we need to have both y and r.

$$
\begin{array}{r}
5^{2}+4^{2}=r^{2} \\
25+16=r^{2} \\
41=r^{2} \\
\sqrt{41}=r
\end{array}
$$

Example 2:

Given $\tan \theta=-\frac{5}{4}$ and $\cos \theta>0$, find $\sin \theta$ and $\sec \theta$.

$$
\begin{aligned}
& \sin \theta=\frac{y}{r}=\frac{-5}{\sqrt{41}}=-\frac{5 \sqrt{41}}{41} \\
& \sec \theta=\frac{r}{x}=\frac{\sqrt{41}}{4}
\end{aligned}
$$

Practice Problems

Page 271: Class Exercises \#1-4

Page 272: Written Exercises \#13-20

