HOW Reminders

• Preparedness:

- Be in the classroom when the bell rings
- Have something to write with, a calculator, and your notebook

Engagement:

 Have your phone and computer put away

Warm-Up

Wait for it...you'll love it.

In the meantime, have your homework out and ready to be checked.

7-3 Notes

When the $r \neq 1$.

Learning Targets:

- To evaluate trig functions of any angle
- Use reference angles to evaluate trig functions.
- Evaluate trig functions of real number.

So many circles

The Unit Circle

Not the Unit Circle

- Radius = 1
- $\cos \theta = x$ -coordinate
- $\sin \theta = y$ -coordinate
- $\tan \theta = \frac{y}{x}$

- Radius $\neq 1$
- $\cos \theta = ???$
- $\sin \theta = ???$
- $\tan \theta = ???$

Not the Unit Circle

Use your given points to come up with a general rule for finding $\cos \theta$, $\sin \theta$, and $\tan \theta$ when we're NOT dealing with the Unit Circle.

Beyond the Unit Circle...

When we're finding values of trig functions beyond the unit circle $(r \neq 1)$, then:

Let (-3, 4) be a point on the terminal side of θ . Find the sine, cosine, and tangent of θ .

Let (-3, 4) be a point on the terminal side of θ . Find the sine, cosine, and tangent of θ .

Let's make a right triangle from this point.

We know the legs have lengths 3 and 4 (from the coordinate of our point).

Let (-3, 4) be a point on the terminal side of θ . Find the sine, cosine, and tangent of θ .

If we drew a circle whose center was the origin and had our coordinate (-3,4) on its edge, the hypotenuse of our triangle would be the radius of the circle.

Let (-3, 4) be a point on the terminal side of θ . Find the sine, cosine, and tangent of θ .

We can use the Pythagorean Theorem to find the length of the hypotenuse.

$$3^{2} + 4^{2} = r^{2}$$

 $9 + 16 = r^{2}$
 $25 = r^{2}$
 $5 = r$

Let (-3, 4) be a point on the terminal side of θ . Find the sine, cosine, and tangent of θ .

 $\sin \theta = \frac{4}{5}$ $\cos \theta = \frac{-3}{5}$ $\tan \theta = \frac{-4}{3}$

Example 2:

Given $\tan \theta = -\frac{5}{4}$ and $\cos \theta > 0$, find $\sin \theta$ and $\sec \theta$.

First...where would this point be in the coordinate plane?

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x} \to \frac{-y}{x} = \frac{-5}{4}$$

So, our point has the coordinate (4, -5).

Example 2:

Given $\tan \theta = -\frac{5}{4}$ and $\cos \theta > 0$, find $\sin \theta$ and $\sec \theta$.

To find $\sin \theta$, we need to have both y and r.

$$5^{2} + 4^{2} = r^{2}$$
$$25 + 16 = r^{2}$$
$$41 = r^{2}$$
$$\sqrt{41} = r$$

Example 2:

Given $\tan \theta = -\frac{5}{4}$ and $\cos \theta > 0$, find $\sin \theta$ and $\sec \theta$.

$$\sin \theta = \frac{y}{r} = \frac{-5}{\sqrt{41}} = -\frac{5\sqrt{41}}{41}$$

$$\sec \theta = \frac{r}{x} = \frac{\sqrt{41}}{4}$$

Practice Problems

Page 271: Class Exercises #1-4

Page 272: Written Exercises #13-20