5-4

The Number e and the Function e^x

Learning Targets:

• I can define and apply the natural exponential function.

The number e

The number *e* is an irrational number.

e is also known as Euler's number.

2.71828182845904523536028747135266249775724709369995957496696762772

The number e

e is defined as:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

which is read as "the limit of $\left(1+\frac{1}{n}\right)^n$ as *n* approaches infinity".

The number *e*

n	$\left(1+\frac{1}{n}\right)^n$
10	2.59374246
100	2.70481383
1000	2.71692393
10,000	2.71814593
100,000	2.718262824

As the value of n increases, $\left(1+\frac{1}{n}\right)^n$ appears to get closer and closer to 2.718...

The function $y = e^x$ is called the natural exponential function.

Compound Interest and the number e

P: principle (initial amount)

r: interest rate (in decimal form)

n: number of times account is being compounded per year

t: number of years

Example:

A total of \$12,000 is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:

a) quarterly (4 times per year)

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = 12,000 \left(1 + \frac{0.09}{4}\right)^{4 \times 5}$$

≈ 18,726.11

Example:

A total of \$12,000 is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:

b) monthly (12 times per year)

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = 12,000 \left(1 + \frac{0.09}{12}\right)^{12 \times 5}$$

≈ 18,788.17

Compound Interest and the number e

For continuous compounding, we use a similar formula with the number *e*.

- P: principle (initial amount)
- *r*: interest rate (in decimal form)
- t: number of years

Example:

A total of \$12,000 is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:

c) continuously (use the formula with *e*)

 $A = Pe^{rt}$ $A = 12,000 \times e^{0.09 \times 5}$

≈ 18,819.75

Practice Problems:

5-4: Page 189

#2, 4, 5-6, 10-12