5-4

The Number \boldsymbol{e} and the Function $\boldsymbol{e}^{\boldsymbol{x}}$

Learning Targets:

- I can define and apply the natural exponential function.

The number \boldsymbol{e}

The number e is an irrational number.

e is also known as Euler's number.

2.71828182845904523536028747135266249775724709369995957496696762772 407663035354759457138217852516642742746639193200305992181741359662 904357290033429526059563073813232862794349076323382988075319525101 901157383418793070215408914993488416750924476146066808226480016847 741185374234544243710753907774499206955170276183860626133138458300 075204493382656029760673711320070932870912744374704723069697720931 014169283681902551510865746377211125238978442505695369677078544996 996794686445490598793163688923009879312773617821542499922957635148 220826989519366803318252886939849646510582093923982948879332036250 944311730123819706841614039701983767932068328237646480429531180232 878250981945581530175671736133206981125099618188159304169035159888 851934580727386673858942287922849989208680582574927961048419844436 346324496848756023362482704197862320900216099023530436994184914631 409343173814364054625315209618369088870701676839642437814059271456

The number \boldsymbol{e}

e is defined as:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

which is read as "the limit of $\left(1+\frac{1}{n}\right)^{n}$ as n approaches infinity".

The number \boldsymbol{e}

\boldsymbol{n}	$\left(\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{n}}\right)^{\boldsymbol{n}}$
10	2.59374246
100	2.70481383
1000	2.71692393
10,000	2.71814593
100,000	2.718262824

As the value of n increases, $\left(1+\frac{1}{n}\right)^{n}$ appears to get closer and closer to 2.718...

The function $y=e^{x}$ is called the natural exponential function.

Compound Interest and the number \boldsymbol{e}

$$
A=P\left(1+\frac{r}{n}\right)^{n}
$$

P : principle (initial amount)
r : interest rate (in decimal form)
n : number of times account is being compounded per year
t : number of years

Example:

A total of $\$ 12,000$ is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:
a) quarterly (4 times per year)

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=12,000\left(1+\frac{0.09}{4}\right)^{4 \times 5}
\end{aligned}
$$

$$
\approx 18,726.11
$$

Example:

A total of $\$ 12,000$ is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:
b) monthly (12 times per year)

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=12,000\left(1+\frac{0.09}{12}\right)^{12 \times 5}
\end{aligned}
$$

$$
\approx 18,788.17
$$

Compound Interest and the number \boldsymbol{e}

$A=P e^{r t}$
For continuous
compounding, we use a similar formula with the number e.

P : principle (initial amount)
r : interest rate (in decimal form)
t : number of years

Example:

A total of $\$ 12,000$ is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:
c) continuously (use the formula with e)

$$
\begin{aligned}
A & =P e^{r t} \\
A & =12,000 \times e^{0.09 \times 5} \\
& \approx 18,819.75
\end{aligned}
$$

Practice Problems:

```
                        5-4:
Page 189
#2, 4, 5-6, 10-12
```

