Warm-Up

Factor each completely.

1) $25m^2 + 10m - 35$

Simplify each expression.

2)
$$\frac{x-9}{x^2-12x+27}$$
 3) $\frac{n^2+2n-63}{n^2-2n-35}$

5-3 Exponential Functions

Learning Targets:

• I can define and use exponential functions.

Remember:

Exponential growth

Exponential decay

Example 1:

If *f* is an exponential function, f(0) = 3, and f(2) = 12, find f(-2). Since *f* is an exponential function, then $f(x) = ab^x$. Since f(0) = 3, then $3 = ab^0$ 3 = a

```
Now, since f(2) = 12, then 12 = 3 * b^2

4 = b^2

2 = b

So, f(x) = 3 * 2^x

f(-2) = 3 * 2^{-2}

= 3 * .25

= .75
```

Example 2:

A bank advertises that if you open a savings account, you can double your money in 12 years. What is the bank's rate?

 $A(t) = A_0(1+r)^t$ $A_0: \text{ amount at time } t = 0$ r: growth rate

 $2A_{0} = A_{0}(1+r)^{12}$ $2 = (1+r)^{12}$ $\sqrt[12]{2} = 1+r$ $2^{\frac{1}{12}} = 1+r$ 1.059 = 1+r .059 = r 5.9% = r

Let's get real though...

Actual interest rates for savings accounts

Bank Account	Minimum Balance for Rate	APY
Wells Fargo Platinum Savings	\$100,000	0.05%
HSBC Advance Savings	\$15,000	0.05%
Citizens Access Online Savings Account	\$5,000	2.35%
Ally Bank Online Savings	\$0	2.20%
Marcus by Goldman Sachs High-Yield Savings	\$0	2.25%
Synchrony High-Yield Savings	\$0	2.25%

Let's get real though...

Actual interest rates for linked checking savings accounts

Bank Account	Standard APY	Minimum Balance for Relationship Rate	APY
Chase Premier Savings	0.01%	\$0 \$50,000 \$100,000 \$250,000	0.04% 0.07% 0.08% 0.11%
Fifth Third Relationship Savings	0.01% – 0.05%	\$0.01 \$25,000	0.02% 0.10%
PNC Standard Savings	0.01%	\$1 \$2,500	0.05% 0.10%
TD Bank Preferred Savings	0.05% – 0.35%	\$0.01 \$20,000 \$50,000 \$100,000 \$250,000 \$10,000,000	0.05% 0.20% 0.35% 0.35% 0.35% 0.35%

The Rule of 72

If a quantity is growing at a rate of r% per year (or month), then the doubling time is approximately $(72 \div r)$ years (or months).

For example, if a quantity grows at 8% per month, then its doubling time will be about $72 \div 8 = 9$ months.

If a quantity grows at 2% per year, then its doubling time will be about $72 \div 2 = 36$ years.

Half-Life

The *half-life* of something is the amount of time it takes a given quantity to decrease to half of its initial value.

$$A(t) = A_0 \left(\frac{1}{2}\right)^{\frac{t}{k}}$$

A(t): Final amount after a given time
A₀: Initial amount
t: time passed
k: half-life

Example 3:

A radioactive isotope has a half-life of 5 days. If 6.41 grams are present initially, how much will be present after 2 weeks?

$$A(t) = A_0 \left(\frac{1}{2}\right)^{\overline{k}}$$
$$A(14) = 6.41 \left(\frac{1}{2}\right)^{\frac{14}{5}}$$

 $\approx 0.9204 \text{ grams}$

t

Practice Problems:

5-3: Page 183-184 #1-9, 11, 13