Warm-Up
Factor each completely.

1) $25 m^{2}+10 m-35$

Simplify each expression.
2) $\frac{x-9}{x^{2}-12 x+27}$
3) $\frac{n^{2}+2 n-63}{n^{2}-2 n-35}$

## 5-3 <br> Exponential Functions

Learning Targets:

- I can define and use exponential functions.


## Remember:



Exponential growth


$$
0<b<1
$$

Exponential decay

## Example 1:

If $f$ is an exponential function, $f(0)=3$, and $f(2)=12$, find $f(-2)$.
Since $f$ is an exponential function, then $f(x)=a b^{x}$.
Since $f(0)=3$, then $3=a b^{0}$

$$
3=a
$$

Now, since $f(2)=12$, then $12=3 * b^{2}$

$$
2=b
$$

$$
\begin{aligned}
f(-2) & =3 * 2^{-2} \\
& =3 * .25 \\
& =.75
\end{aligned}
$$

## Example 2:

A bank advertises that if you open a savings account, you can double your money in 12 years. What is the bank's rate?

$$
\begin{aligned}
& A(t)=A_{0}(1+r)^{t} \\
& 2 A_{0}=A_{0}(1+r)^{12} \\
& 2=(1+r)^{12} \\
& \sqrt[12]{2}=1+r \\
& 2^{\frac{1}{12}}=1+r \\
& 1.059=1+r \\
& .059=r \\
& 5.9 \%=r
\end{aligned}
$$

## Let's get real though...

Actual interest rates for savings accounts

| Bank Account | Minimum Balance for Rate | APY |
| :--- | :--- | :--- |
| Wells Fargo Platinum Savings | $\$ 100,000$ | $0.05 \%$ |
| HSBC Advance Savings | $\$ 15,000$ | $0.05 \%$ |
| Citizens Access Online Savings Account | $\$ 5,000$ | $2.35 \%$ |
| Ally Bank Online Savings | $\$ 0$ | $2.20 \%$ |
| Marcus by Goldman Sachs High-Yield Savings | $\$ 0$ | $2.25 \%$ |
| Synchrony High-Yield Savings | $\$ 0$ | $2.25 \%$ |

## Let's get real though...

## Actual interest rates for linked checking savings accounts

| Bank Account | Standard APY | Minimum Balance for Relationship Rate | APY |
| :---: | :---: | :---: | :---: |
| Chase Premier Savings | 0.01\% | $\begin{aligned} & \$ 0 \\ & \$ 50,000 \\ & \$ 100,000 \\ & \$ 250,000 \end{aligned}$ | $\begin{aligned} & 0.04 \% \\ & 0.07 \% \\ & 0.08 \% \\ & 0.11 \% \end{aligned}$ |
| Fifth Third Relationship Savings | 0.01\% - 0.05\% | $\begin{aligned} & \$ 0.01 \\ & \$ 25,000 \end{aligned}$ | $\begin{aligned} & 0.02 \% \\ & 0.10 \% \end{aligned}$ |
| PNC Standard Savings | 0.01\% | \$1 $\$ 2,500$ | $\begin{aligned} & 0.05 \% \\ & 0.10 \% \end{aligned}$ |
| TD Bank Preferred Savings | 0.05\%-0.35\% | \$0.01 <br> \$20,000 <br> \$50,000 <br> \$100,000 <br> \$250,000 <br> \$10,000,000 | $\begin{aligned} & 0.05 \% \\ & 0.20 \% \\ & 0.35 \% \\ & 0.35 \% \\ & 0.35 \% \\ & 0.35 \% \end{aligned}$ |

## The Rule of 72

If a quantity is growing at a rate of $r \%$ per year (or month), then the doubling time is approximately ( $72 \div r$ ) years (or months).

For example, if a quantity grows at $8 \%$ per

## The

 month, then its doubling time will be about $72 \div 8=9$ months.If a quantity grows at $2 \%$ per year, then its doubling time will be about $72 \div 2=36$ years.

## Half-Life

The half-life of something is the amount of time it takes a given quantity to decrease to half of its initial value.

$$
\begin{array}{ll}
A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{k}} & A(t): \text { Final amount after a given time } \\
& A_{0}: \text { Initial amount } \\
& t: \text { time passed } \\
& k: \text { half-life }
\end{array}
$$

## Example 3:

A radioactive isotope has a half-life of 5 days. If 6.41 grams are present initially, how much will be present after 2 weeks?

$$
\begin{aligned}
A(t) & =A_{0}\left(\frac{1}{2}\right)^{\frac{t}{k}} \\
A(14) & =6.41\left(\frac{1}{2}\right)^{\frac{14}{5}} \\
& \approx 0.9204 \mathrm{grams}
\end{aligned}
$$



## Practice Problems:

$$
\begin{gathered}
5-3: \\
\text { Page 183-184 } \\
\# 1-9,11,13
\end{gathered}
$$

