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Simplify each expression.
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Warm-Up

Simplify each expression.
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Learning Targets:

| can find or estimate the limit of an infinite sequence or
determine that the limit does not exist



A series that does not have a last term is called infinite.
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When you substitute larger and larger values of n, t,, = (2—) becomes a
smaller and smaller positive number.
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Consider the infinite geometric sequence: >

TN

The value of t,, will
never become zero.




The graph here illustrates this idea of getting smaller but never reaching 0.

n
Since the values of t,, = G) get closer
to 0 as the values of n get larger, we 41,

can say that the sequence approaches 11 o
0 as n approaches . z
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Or, we can write it as: 8
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Consider the sequence: 1 ! 1+1 1 1 1+1 1+ St
| u 1 ——, -1 —-—, ——_
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If we graph it, we get




Examples

1) lim (0.99)"

n—-0o

Let’s plug in values for n... lim (0.99)" = ¢

n—>00

(0.99)1° =~ 0.904

(0.99)1°°0 ~ 0.000043

(0.99)10.000 ~ 2 2 x10~%*
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Examples

2) lim sin (1)

n—-oo n

Let’s plug in values for n...

1
in(—) ~ 0.0017
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Theorem

n—0o

Ifrl <1, then limr™=0.
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Exponential Decay
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Examples

o on?+1 Let’s simplify a bit by dividing both the numerator
3) ,ll_f?o 2 — 3n and the denominator by the denominator’s
highest power of n, which in this case is n?.
n®+1 n? 1 1 As n gets larger
n?+1 n2 n2+n2 1+ 1 Tl93 Jeh
— 5 — 5 = - and —
2n2 — 3n 2n4 — 3n 2n 3n 5 _ 3 n n
2 N2 n2 n approach 0.
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Examples

5n% ++/n

4) lim

n-oo 3n3 4+ 7

Again, let’s divide both the numerator and the
denominator by the denominator’s highest
power of nn, which in this case is n>.
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Consider the following sequence:

1 23 4 (-D™'«n
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As n gets larger, the graph
goes towards both 1 and —1.

So,

(_1)n+1 x N
lim

Nn—00 n+1

does not exist.



Consider the following sequence:

3,7,11,15,...,4n —1,...

As n gets larger, the terms in
the sequence also get larger.

So,

lim4n—1 = o

n—0o

Consider the following sequence:

—-10,-100,-1000,...,—10",.

As n gets larger, the terms in
the sequence get smaller.

So,

n—>00

®



Practice Problems

Pages 496-497

#1-18

s all this confusion
and complexity

necessary?
>




