Warm-Up

Simplify each expression.

1) $\frac{36}{12 x+32}$
2) $\frac{35 x}{35 x-15}$
3) $\frac{x-2}{9 x^{2}-18 x}$
4) $\frac{27 m-90}{18 m-45}$
5) $\frac{r^{2}-14 r+48}{r^{2}-2 r-24}$
6) $\frac{p-7}{7 p^{2}-50 p+7}$

Warm-Up

Simplify each expression.

1) $\frac{36}{12 x+32}$

$$
\frac{9}{3 x+8}
$$

3) $\frac{x-2}{9 x^{2}-18 x}$

$$
\frac{1}{9 x}
$$

5) $\frac{r^{2}-14 r+48}{r^{2}-2 r-24}$
$\frac{r-8}{r+4}$
6) $\frac{35 x}{35 x-15}$

$$
\frac{7 x}{7 x-3}
$$

4) $\frac{27 m-90}{18 m-45}$
$\frac{3 m-10}{2 m-5}$
5) $\frac{p-7}{7 p^{2}-50 p+7}$

$$
\frac{1}{7 p-1}
$$

13-4: Limits of Infinite Sequences

Learning Targets:

- I can find or estimate the limit of an infinite sequence or determine that the limit does not exist

A series that does not have a last term is called infinite.

Consider the infinite geometric sequence: $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots,\left(\frac{1}{2}\right)^{n}, \ldots$

When you substitute larger and larger values of $n, t_{n}=\left(\frac{1}{2}\right)^{n}$ becomes a smaller and smaller positive number.

The value of t_{n} will never become zero.

The graph here illustrates this idea of getting smaller but never reaching 0 .
Since the values of $t_{n}=\left(\frac{1}{2}\right)^{n}$ get closer to 0 as the values of n get larger, we can say that the sequence approaches 0 as n approaches ∞.

Or, we can write it as:

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}=0
$$

This is read, "the limit of $\left(\frac{1}{2}\right)^{n}$ as n goes to infinity is 0 .

Consider the sequence: $1-\frac{1}{1}, 1+\frac{1}{2}, 1-\frac{1}{3}, 1+\frac{1}{4}, \ldots, 1+\frac{(-1)^{n}}{n}, \ldots$

If we graph it, we get

$$
\lim _{n \rightarrow \infty} 1+\frac{(-1)^{n}}{n}=1
$$

Examples

1) $\lim _{n \rightarrow \infty}(0.99)^{n}$

Let's plug in values for $n \ldots$

$$
\lim _{n \rightarrow \infty}(0.99)^{n}=0
$$

$(0.99)^{10} \approx 0.904$
$(0.99)^{1000} \approx 0.000043$
$(0.99)^{10,000} \approx 2.2 \times 10^{-44}$

Examples

2) $\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)$

Let's plug in values for $n \ldots$

$$
\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)=0
$$

$\sin \left(\frac{1}{10}\right) \approx 0.0017$
$\sin \left(\frac{1}{1000}\right) \approx 0.000017$

Theorem

If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}=0$.

Examples

3) $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n^{2}-3 n}$

Let's simplify a bit by dividing both the numerator and the denominator by the denominator's highest power of n, which in this case is n^{2}.

$$
\begin{aligned}
& \frac{n^{2}+1}{2 n^{2}-3 n} \longrightarrow \frac{\frac{n^{2}+1}{n^{2}}}{\frac{2 n^{2}-3 n}{n^{2}}}=\frac{\frac{n^{2}}{n^{2}}+\frac{1}{n^{2}}}{\frac{2 n^{2}}{n^{2}}-\frac{3 n}{n^{2}}}=\frac{1+\frac{1}{n^{2}}}{2-\frac{3}{n}} \quad \begin{array}{l}
\text { As } n \text { gets larger, } \\
\frac{1}{n^{2}} \text { and } \frac{3}{n} \\
\text { approach } 0 .
\end{array} \\
& \frac{1+0}{2-0}=\frac{1}{2} \quad \text { so, } \lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n^{2}-3 n}=\frac{1}{2}
\end{aligned}
$$

Examples

4) $\lim _{n \rightarrow \infty} \frac{5 n^{2}+\sqrt{n}}{3 n^{3}+7}$

Again, let's divide both the numerator and the denominator by the denominator's highest power of n, which in this case is n^{3}.
$\frac{5 n^{2}+\sqrt{n}}{3 n^{3}+7} \longrightarrow \frac{\frac{5 n^{2}+\sqrt{n}}{n^{3}}}{\frac{3 n^{3}+7}{n^{3}}}=\frac{\frac{5 n^{2}}{n^{3}}+\frac{n^{\frac{1}{2}}}{n^{3}}}{\frac{3 n^{3}}{n^{3}}+\frac{7}{n^{3}}}=\frac{\frac{5}{n}+\frac{1}{n^{\frac{5}{2}}}}{3+\frac{7}{n^{3}}} \quad \begin{aligned} & \text { As } n \text { gets larger }, \\ & \frac{5}{n}, \frac{1}{n^{\frac{5}{2}}} \text { and } \frac{7}{n^{3}} \\ & \text { approach } 0 .\end{aligned}$

$$
\frac{0+0}{3+0}=\frac{0}{3}=0 \quad \text { so, } \lim _{n \rightarrow \infty} \frac{5 n^{2}+\sqrt{n}}{3 n^{3}+7}=0
$$

Consider the following sequence:

$$
\frac{1}{2},-\frac{2}{3}, \frac{3}{4},-\frac{4}{5}, \ldots, \frac{(-1)^{n+1} * n}{n+1}, \ldots
$$

As n gets larger, the graph goes towards both 1 and -1 .

So,

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n+1} * n}{n+1}
$$

does not exist.

Consider the following sequence:
$3,7,11,15, \ldots, 4 n-1, \ldots$

As n gets larger, the terms in the sequence also get larger.

So,

$$
\lim _{n \rightarrow \infty} 4 n-1=\infty
$$

Consider the following sequence:
$-10,-100,-1000, \ldots,-10^{n}, \ldots$

As n gets larger, the terms in the sequence get smaller.

So,

$$
\lim _{n \rightarrow \infty}-10^{n}=-\infty
$$

Practice Problems

Pages 496-497
\#1-18

