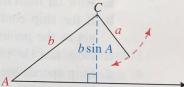

In Exercises 3–5, consider $\triangle ABC$.

If $\angle A \ge 90^{\circ}$, what can you conclude about the measure of $\angle B$? 5. If a

R has a greater measure than $\angle C$, what must be true of by that must be true of $\angle A$ and $\angle B$? Why? Why? In Exercises 6-8, so

equation that you car ω solve for x.


9. If a = 8 and b = 8w a diagram to show that mined for ea s is uniquely deterthe given measures of $\angle A$: **a.** 45

of sines to show that $\triangle ABC$ in part (a) of Exercise

He law of sines to show that there is no $\triangle XYZ$ with $\angle X = 30^{\circ}$, $x = 30^{\circ}$ v = 8.

WRITTEN EXERCISES

1. The purpose of this exercise is to determine whether $\triangle ABC$ can be constructed when two lengths a and b and the measure of an acute angle A are given. As shown at the right, first $\angle A$ and then the side of length b are constructed; finally a circular arc is drawn with center C and radius a. Given that the distance from C to the side opposite C is b sin A, determine for each of the following conditions whether 0, 1, or 2 triangles can be formed.

a.
$$a < b \sin A$$

b.
$$a = b \sin A$$

c.
$$b \sin A < a < b$$

d.
$$a \ge b$$

2. Use Exercise 1 or the law of sines to determine whether there are 0, 1, or 2 triangles possible for each of the following sets of measurements.

a.
$$a = 2$$
, $b = 4$, $\angle A = 22^{\circ}$

b.
$$b = 3$$
, $c = 6$, $\angle B = 30^{\circ}$

c.
$$a = 7$$
, $c = 5$, $\angle A = 68^{\circ}$

d.
$$b = 4$$
, $c = 3$, $\angle C = 76^{\circ}$

In Exercises 3–14, solve each $\triangle ABC$. Give angle measures to the nearest tenth of a degree and lengths in simplest radical form or to three significant digits. Be alert to problems with no solution or two solutions.

3.
$$\angle A = 45^{\circ}, \angle B = 60^{\circ}, a = 14$$

4.
$$\angle B = 30^{\circ}, \angle C = 45^{\circ}, b = 9$$

5.
$$\angle B = 30^{\circ}, \ \angle A = 135^{\circ}, \ b = 4$$

6.
$$\angle A = 60^{\circ}, \angle B = 75^{\circ}, c = 10$$

347

$$7.$$
 $\angle C = 25^{\circ}, b = 3, c = 2$

9.
$$\angle A = 76^{\circ}, a = 12, b = 4$$

11.
$$\angle C = 88^{\circ}, b = 7, c = 7$$

13.
$$\angle B = 40^{\circ}$$
, $a = 12$, $b = 6$

In
$$\triangle RST$$
, $\angle R = 140^{\circ}$ and $s = \frac{3}{4}r$. Find the measures of $\angle S$ and $\angle T$.

16. In $\triangle DEF$, $\angle F = 120^{\circ}$ and $f = \frac{4}{3}e$. Find the measures of $\angle D$ and $\angle E$.

17. A fire tower at point A is 30 km north of a fire tower at point B. A fire at point F is observed from both towers. If $\angle FAB = 54^{\circ}$ and $\angle ABF = 31^{\circ}$, find AF.

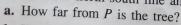
18. From lighthouses P and Q, 16 km apart, a disabled ship S is sighted. If $\angle SPQ = 44^{\circ}$ and $\angle SQP = 66^{\circ}$, find the distance from S to the nearer lighthouse.

8.
$$\angle B = 36^{\circ}$$
, $a = 10$, $b = 8$

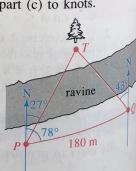
10.
$$\angle B = 130^{\circ}, b = 15, c = 11$$

12.
$$\angle A = 95^{\circ}$$
, $a = 13$, $c = 10$

14.
$$\angle C = 112^{\circ}, c = 5, a = 7$$


19. In
$$\triangle ABC$$
, $\tan A = \frac{3}{4}$, $\tan B = 1$, and $a = 10$. Find b in simplest radical form.

20. In
$$\triangle ABC$$
, $\cos A = \frac{1}{2}$, $\cos B = -\frac{1}{4}$, and $a = 6$. Find b in simplest radical form.


- **B** 21. Navigation A ship passes by buoy B which is known to be 3000 yd from peninsula P. The ship is steaming east along line BE and $\angle PBE$ is measured as 28°. After 10 min, the ship is at S and $\angle PSE$ is measured as 63°.
 - **a.** How far from the peninsula is the ship when it is at S?
 - **b.** If the ship continues east, what is the closest it will get to the peninsula?
 - c. How fast (in yd/min) is the ship traveling?

d. Ship speeds are often given in knots, where 1 knot = 1 nautical mile per hour ≈ 6080 feet per hour. Convert your answer in part (c) to knots.

22. Surveying From points P and Q, 180 m apart, a tree at T is sighted on the opposite side of a deep ravine. From point P, a compass indicates that the angle between the north-south line and line of sight \overline{PT} is 27° and that the angle between the north-south line and \overline{PQ} is 78° . From point Q, the angle between the north-south line and \overline{QT} is 43° .

b. How far from P is the point on \overline{PQ} that is closest to the tree?

3000 yd