The Law of Cosines

9-4: Use the law of cosines to find unknown parts of a triangle.

The Law of Cosines

In $\triangle A B C$:
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

Example 2:

Suppose that two sides of a triangle have lengths 3 cm and 7 cm and that the angle between them measures 130°. Find the length of the third side.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& c^{2}=3^{2}+7^{2}-2 * 3 * 7 * \cos 130^{\circ} \\
& c^{2} \approx 85 \\
& c \approx 9.22 \mathrm{~cm}
\end{aligned}
$$

Example 3:

The lengths of the sides of a triangle are 5,10 , and 12 . Solve the triangle.
Let's find α first.

$$
\begin{aligned}
& 12^{2}=5^{2}+10^{2}-2 * 5 * 10 * \cos \alpha \\
& 144=125-100 * \cos \alpha \\
& 19=-100 * \cos \alpha \\
& -.19=\cos \alpha \\
& \cos ^{-1}(-.19)=\alpha \\
& 101^{\circ} \approx \alpha
\end{aligned}
$$

Example 3:

The lengths of the sides of a triangle are 5,10 , and 12 . Solve the triangle.
To find β, we can use either Law of Cosines again or Law of Sines.

$$
\begin{aligned}
& \frac{\sin \beta}{5}=\frac{\sin \alpha}{12} \\
& \frac{\sin \beta}{5}=\frac{\sin 101^{\circ}}{12}
\end{aligned}
$$

$$
12 \sin \beta=4.91
$$

$$
\beta=24.14^{\circ}
$$

$12 \sin \beta=5 \sin 101^{\circ}$

$$
\begin{aligned}
& \theta=180^{\circ}-\left(101^{\circ}+24.14^{\circ}\right) \\
& \theta=54.86^{\circ}
\end{aligned}
$$

Example 4:

In the diagram, $A B=5, B D=2, D C=4$, and $C A=7$. Find $A D$.
We can first use the Law of Cosines to find $m \angle B$.

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& 7^{2}=6^{2}+5^{2}-2 * 6 * 5 * \cos B \\
& 49=61-60 * \cos B \\
& -12=-60 * \cos B
\end{aligned}
$$

$$
0.2=\cos B
$$

$$
\cos ^{-1}(0.2)=B \quad \longrightarrow \quad \angle B \approx 78.5^{\circ}
$$

Example 4:

In the diagram, $A B=5, B D=2, D C=4$, and $C A=7$. Find $A D$.
Now we can use the Law of Cosines again to find $A D$.
$b^{2}=a^{2}+d^{2}-2 a d \cos B$
$b^{2}=2^{2}+5^{2}-2 * 2 * 5 * \cos 78.5$
$b^{2}=25$

$b=5$

Practice Problems

Pages 352-353 (Written Exercises)
\#1-7 odds, 14, 15

