Warm-Up

Solve each equation.

1)
$$\begin{bmatrix} -34 & -10 \end{bmatrix} = 3Y - \begin{bmatrix} 7 & -8 \end{bmatrix}$$

2) $\begin{bmatrix} 13 & 4 \\ -46 & -25 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -4 & 0 \end{bmatrix} B - \begin{bmatrix} -2 & 0 \\ 2 & 5 \end{bmatrix}$

Warm-Up

Solve each equation.

1)
$$\begin{bmatrix} -34 & -10 \end{bmatrix} = 3Y - \begin{bmatrix} 7 & -8 \end{bmatrix}$$

 $\begin{bmatrix} -9 & -6 \end{bmatrix}$

2)
$$\begin{bmatrix} 13 & 4 \\ -46 & -25 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -4 & 0 \end{bmatrix} B - \begin{bmatrix} -2 & 0 \\ 2 & 5 \end{bmatrix}$$
$$\begin{bmatrix} 11 & 5 \\ 11 & 6 \end{bmatrix}$$

The Law of Sines

9-3: Use the law of sines to find unknown parts of a triangle.

The Law of Sines

• When you have a triangle that is NOT a right triangle, you cannot use SOH CAH TOA to find missing measurements.

• One option you have is to use the Law of Sines.

The Law of Sines

Example 1:

A civil engineer wants to determine the distances from points *A* and *B* to an inaccessible point *C*. From direct measurement the engineer knows that AB = 25m, $\angle A = 110^{\circ}$, and $\angle B = 20^{\circ}$. Find *AC* and *BC*.

We can first easily find the measure of $\angle C$.

$$\angle C = 180^{\circ} - (110^{\circ} + 20^{\circ})$$
$$\angle C = 50^{\circ}$$

Example 1:

A civil engineer wants to determine the distances from points *A* and *B* to an inaccessible point *C*. From direct measurement the engineer knows that AB = 25m, $\angle A = 110^{\circ}$, and $\angle B = 20^{\circ}$. Find *AC* and *BC*.

Then, we can use the Law of Sines to find sides b and a.

sin B	sin C	sin A _ si	n <i>C</i>
	<u>С</u>		С
$\sin 20^{\circ}$	$ sin 50^{\circ} $	$\sin 110^{\circ}$	sin 50°
b	25	=	25

 $b \approx 11.2$ m a

 $a \approx 30.7 \mathrm{m}$

Practice Problems

Pages 347-348 #3-9 odds, 15, 17

