## Warm-Up

Solve each equation.

1) $\left[\begin{array}{ll}-34 & -10\end{array}\right]=3 Y-\left[\begin{array}{ll}7 & -8\end{array}\right]$
2) $\left[\begin{array}{cc}13 & 4 \\ -46 & -25\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -4 & 0\end{array}\right] B-\left[\begin{array}{cc}-2 & 0 \\ 2 & 5\end{array}\right]$

## Warm-Up

Solve each equation.

1) $\left[\begin{array}{ll}-34 & -10\end{array}\right]=3 Y-\left[\begin{array}{ll}7 & -8\end{array}\right]$

$$
\left[\begin{array}{ll}
-9 & -6
\end{array}\right]
$$

2) $\left[\begin{array}{cc}13 & 4 \\ -46 & -25\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -4 & 0\end{array}\right] B-\left[\begin{array}{cc}-2 & 0 \\ 2 & 5\end{array}\right]$
$\left[\begin{array}{ll}11 & 5 \\ 11 & 6\end{array}\right]$

## The Law of Sines

9-3: Use the law of sines to find unknown parts of a triangle.

## The Law of Sines

- When you have a triangle that is NOT a right triangle, you cannot use SOH CAH TOA to find missing measurements.
- One option you have is to use the Law of Sines.



## The Law of Sines

$$
\text { In } \triangle A B C, \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$



## Example 1:

A civil engineer wants to determine the distances from points $A$ and $B$ to an inaccessible point $C$. From direct measurement the engineer knows that $A B=25 \mathrm{~m}, \angle A=110^{\circ}$, and $\angle B=20^{\circ}$. Find $A C$ and $B C$.

We can first easily find the measure of $\angle C$.
$\angle C=180^{\circ}-\left(110^{\circ}+20^{\circ}\right)$
$\angle C=50^{\circ}$


## Example 1:

A civil engineer wants to determine the distances from points $A$ and $B$ to an inaccessible point $C$. From direct measurement the engineer knows that $A B=25 \mathrm{~m}, \angle A=110^{\circ}$, and $\angle B=20^{\circ}$. Find $A C$ and $B C$.

Then, we can use the Law of Sines to find sides $b$ and $a$.

$$
\begin{array}{ll}
\frac{\sin B}{b}=\frac{\sin C}{c} & \frac{\sin A}{a}=\frac{\sin C}{c} \\
\frac{\sin 20^{\circ}}{b}=\frac{\sin 50^{\circ}}{25} & \frac{\sin 110^{\circ}}{a}=\frac{\sin 50^{\circ}}{25} \\
b \approx 11.2 \mathrm{~m} & a \approx 30.7 \mathrm{~m}
\end{array}
$$



## Practice Problems

Pages 347-348
\#3-9 odds, 15, 17

