HOW Reminders

• Preparedness:

- Be in the classroom when the bell rings
- Have something to write with, a calculator, and your notebook

Engagement:

 Have your phone and computer put away

For your warm-up, take out your Big Ideas Student Journals and your calculator.

Warm-Up

Turn to page 1 in your Big Ideas journal and do questions #1-9. You can work with someone if you'd like.

up.

- translate 3 units down.
- in the x-axis.

2.1 Notes Transformations of Quadratic Functions

Learning Targets:

- I can describe transformations of quadratic functions.
- I can find the vertex of a parabola, give its equation in vertex form.
- I can write the equation of a parabola in vertex form.

EXPLORATION 1

Identifying Graphs of Quadratic Functions

Work with a partner. Match each quadratic function with its graph. Explain your reasoning. Then use a graphing calculator to verify that your answer is correct.

a. $g(x) = -(x-2)^2$ **b.** $g(x) = (x-2)^2 + 2$ **c.** $g(x) = -(x+2)^2 - 2$ **d.** $g(x) = 0.5(x-2)^2 - 2$ **e.** $g(x) = 2(x-2)^2$ **f.** $g(x) = -(x+2)^2 + 2$

Student Journal: pages 24-25

Communicate Your Answer

2. How do the constants *a*, *h*, and *k* affect the graph of the quadratic function $g(x) = a(x - h)^2 + k$?

<u>Vertex</u>

The *vertex* of a parabola is its lowest/highest point.

The *axis of symmetry* of a parabola is the vertical line through the *x*-coordinate of its vertex

Graph in <u>Desmos</u>!

Graph each function in Desmos. Then write down the coordinate of its vertex.

1) $f(x) = (x-1)^2 - 3$ (1, -3) 2) $f(x) = 2(x-4)^2 + 4$ right 1, down 3 (4, 4)right 4, up 4 3) $f(x) = -(x+4)^2 + 4$ (-4, 4) 4) $f(x) = -\frac{1}{2}(x+4)^2 - 2$ left 4, up 4 (-4, -2) left 4, down 2 6) $f(x) = (x-3)^2 + 2$ 5) $f(x) = -2(x-2)^2 - 4(2, -4)$ right 2, down 4 (3, 2)right 3, up 2 8) $f(x) = (x+2)^2 + 1$ (-2, 1) 7) $f(x) = -2(x-2)^2 - 2$ (2, -2) left 2, up 1 right 2. down 2

A *transformation* changes the size, shape, position, or orientation of a graph. There are several different types of transformations:

 A translation shifts the graph horizontally or vertically. It does not change its size, shape, or orientation.

Vertex Form

The vertex form of a quadratic function is:

The point (h, k) is the coordinate for the vertex.

Horizontal translation 4 units right Vertical translation 1 unit up

Work with a partner

From each equation, work together to find:

- the vertex
- the opening direction
- the axis of symmetry

Horizontal translation 5 units left Vertical translation 4 units up

Horizontal translation 4 units left Vertical translation 1 unit down