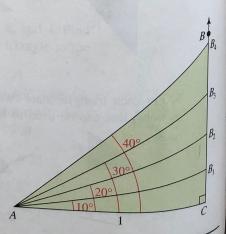
WRITTEN EXERCISES

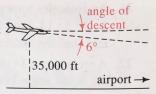
Throughout the exercises, give angle measures to the nearest tenth of a degree and lengths to three significant digits.

- A 1. In $\triangle ABC$, $\angle A = 90^{\circ}$, $\angle B = 25^{\circ}$, and a = 18. Find b and c.
 - 2. In $\triangle PQR$, $\angle P = 90^{\circ}$, $\angle Q = 64^{\circ}$, and p = 27. Find q and r.
 - 3. In $\triangle DEF$, $\angle D = 90^{\circ}$, $\angle E = 12^{\circ}$, and e = 9. Find d and f.
 - **4.** In $\triangle XYZ$, $\angle X = 90^\circ$, $\angle Y = 37^\circ$, and z = 25. Find x and y.
 - 5. Use the diagram at the right to find:
 - \mathbf{a} . $\sin A$
- b. cos Be. sec A
- c. tan A

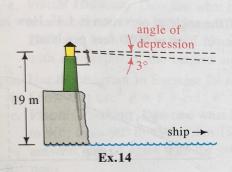
- **d.** cot *B*
- $\mathbf{f.}$ csc B

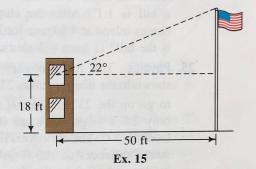

- **6.** Sketch $\triangle ABC$ with $\angle C = 90^{\circ}$. What is the relationship between:
 - **a.** $\sin A$ and $\cos B$?
- **b.** tan A and cot B?
- c. sec A and csc R?
- 7. Find the measures of the acute angles of a 3-4-5 right triangle.
- **8.** Find the measures of the acute angles of a right triangle whose legs are 9 cm and 16 cm long.
- 9. The legs of an isosceles right triangle are 1 unit long.
 - a. Find the length of the hypotenuse in simplest radical form.
 - **b.** Use part (a) to find the exact value of each of the following.
 - (1) $\tan 45^{\circ}$ (2) $\sin 45^{\circ}$ (3) $\cos 45^{\circ}$
 - c. Use a calculator to convert the answers in part (b) to decimal form. Compare these with the values of tan 45°, sin 45°, and cos 45° obtained directly from the calculator.
- 10. The hypotenuse of a 30°-60°-90° triangle is 2 units long.
 - a. Find the lengths of the legs in simplest radical form.
 - b. Use part (a) to find the exact value of each of the following.

 (1) sin 30°

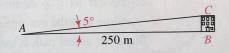

 (2) sin 60°

 (3) tan 30°


 (4) tan 40°
 - c. Use a calculator to convert the answers in part (b) to decimal form. Compare these with the values of sin 30°, sin 60°, tan 30°, and tan 60° obtained directly from the calculator.
- 11. Using graph paper, draw a horizontal segment AC of length 1 unit and a vertical ray CB, as shown. Then use a protractor to draw segments that make angles of 10° , 20° , ..., 80° with \overline{AC} . Find CB_1 , CB_2 , ..., CB_8 by direct measurement. What is the significance of these lengths?
- 12. Refer to the diagram that you drew for Exercise 11. Note that $\angle CAB_2 = 20^\circ$ is twice as large as $\angle CAB_1 = 10^\circ$. Is \overline{CB}_2 twice as long as \overline{CB}_1 ? Is \overline{CB}_4 four times as long as \overline{CB}_1 ?



- **13. Aviation** An airplane is at an elevation of 35,000 ft when it begins its approach to an airport. Its *angle of descent* is 6°.
 - a. What is the distance between the airport and the point on the ground directly below the airplane?



- **b.** What is the approximate air distance between the plane and the airport? What assumptions did you make in finding this distance?
- 14. Navigation A lighthouse keeper observes that there is a 3° angle of depression between the horizontal and the line of sight to a ship. If the keeper is 19 m above the water, how far is the ship from shore?

- 15. A student looks out of a second-story school window and sees the top of the school flagpole at an angle of elevation of 22°. The student is 18 ft above the ground and 50 ft from the flagpole. Find the height of the flagpole.
- 16. For an observer at point A, 250 m from a building, the angle of elevation of the top of the building is 5°. In Chapter 7, we said that $\triangle ABC$ is about the same as a sector with central angle A.

- a. Use the arc length formula $s = r\theta$ to approximate BC. (Remember to express θ in radians.)
- **b.** Use right-triangle trigonometry to find BC more accurately. Compare your answers.
- 17. Find the measures of the angles of an isosceles triangle whose sides are 6, 6, and 8. Also find the area of the triangle.
- 18. The legs of an isosceles triangle are each 21 cm long and the angle between them has measure 52°. What is the length of the third side?
- B 19. In the figure at the right, \overline{PA} and \overline{PB} are tangents to a circle with radius OA = 6. If the measure of $\angle APB$ is 42°, find PA and PB.

20. Sketch the circle $(x - 6)^2 + (y - 8)^2 = 9$ and the two tangents to the circle from the origin. Find the measure of the angle between the tangents.

335