7-2 - Sectors of Circles

Chapter 7 - Trigonometric Functions

Learning Targets:

- Find the arc length and area of a sector of a circle.
- Solve problems involving apparent size.

A sector of a circle is the region bounded by a central angle and the intercepted arc.

A sector's arc length, s, is a fraction of the circumference.

A sector's area, K, is a fraction of the circle's area.

If θ is in radians, then:

$$
K=\frac{1}{2} r^{2} \theta=\frac{1}{2} r s
$$

If θ is in degrees, then:

$$
K=\frac{\pi r^{2} \theta}{360^{\circ}}
$$

Examples:

1) Find the arc length and area of the sector shown.

Arc Length:
$\begin{aligned} S & =\frac{\pi r \theta}{180^{\circ}} \\ & =\frac{\pi \times 12 \times 60^{\circ}}{180^{\circ}}\end{aligned}$
$=4 \pi \approx 12.6$

Area:

$$
\begin{aligned}
K & =\frac{\pi r^{2} \theta}{360^{\circ}} \\
& =\frac{\pi \times 12^{2} \times 60^{\circ}}{360^{\circ}} \\
& =24 \pi \approx 75.4
\end{aligned}
$$

Examples:

1) A sector of a circle has arc length 6 cm and area $75 \mathrm{~cm}^{2}$. Find its radius and measure of its central angle.

$$
\begin{array}{rr}
K=\frac{1}{2} r s & s=r \theta \\
75=\frac{1}{2} \times r \times 6 & 6=25 \theta \\
25 & =r
\end{array}
$$

$$
0.24 \text { radians } \approx 14^{\circ}
$$

Apparent Size

How big an object looks depends on its size and on the angle that it subtends at our eyes. The measure of this angle is called the object's apparent size.

Apparent Size

How big an object looks depends on its size and on the angle that it subtends at our eyes. The measure of this angle is called the object's apparent size.

Link explaining

Example:

Jupiter has an apparent size of 0.01° when it is $8 \times 10^{8} \mathrm{~km}$ from Earth. Find the approximate diameter of Jupiter.
diameter $\approx s \approx \frac{0.01}{360}(2 \pi)\left(8 \times 10^{8}\right)$

$\approx 140,000 \mathrm{~km}$

Practice Problems:

Pages 264-266
\#1-12, 20

