7-2 – Sectors of Circles

Chapter 7 – Trigonometric Functions

Learning Targets:

- Find the arc length and area of a sector of a circle.
- Solve problems involving apparent size.

A *sector* of a circle is the region bounded by a central angle and the intercepted arc.

A sector's arc length, *s*, is a fraction of the circumference.

If θ is in <u>degrees</u>, then:

A sector's area, K, is a fraction of the circle's area.

If θ is in <u>radians</u>, then:

$$\begin{bmatrix} K = \frac{1}{2}r^2\theta = \frac{1}{2}rs \end{bmatrix}$$

If θ is in <u>degrees</u>, then:

$$\begin{bmatrix} K = \frac{\pi r^2 \theta}{360^{\circ}} \end{bmatrix}$$

Examples:

1) Find the arc length and area of the sector shown.

Examples:

 A sector of a circle has arc length 6 cm and area 75 cm². Find its radius and measure of its central angle.

Apparent Size

How big an object looks depends on its size and on the angle that it subtends at our eyes. The measure of this angle is called the object's *apparent size*.

Apparent Size

How big an object looks depends on its size and on the angle that it subtends at our eyes. The measure of this angle is called the object's *apparent size*.

Link explaining moon illusions

Example:

Jupiter has an apparent size of 0.01° when it is 8×10^{8} km from Earth. Find the approximate diameter of Jupiter.

diameter
$$\approx s \approx \frac{0.01}{360} (2\pi) (8 \times 10^8)$$

 $\approx 140,000 \text{ km}$
 $r = 8 \times 10^8 \text{ km}$
 $\theta = 0.01^\circ$
 $diameter \approx arc length of sector$

Practice Problems:

Pages 264-266

#1-12, 20