#### Warm-Up

Factor each completely.

1) 
$$5x^2 - 55x + 90$$
 2)  $2v^2 + 9v + 7$ 

#### Warm-Up

#### Factor each completely.

1) 
$$5x^2 - 55x + 90$$
  
 $5(x - 9)(x - 2)$ 

2)  $2v^2 + 9v + 7$ (2v + 7)(v + 1)

# **Unit 3: Polynomial Functions**

## 4.1 Notes (part 1) – Types of Polynomials & Their Graphs

Learning Targets:

- I can identify polynomial functions and their parts.
- I can graph polynomial functions using desmos.

#### Let's Explore...

 With your partner, examine each graph and its function. What connections can you make?











#### Vocabulary:

• A **monomial** is a number, variable, or the product of a number and one or more variables.

Examples:

- $4xy \qquad 2.73 \qquad -\frac{3}{a} \qquad b \qquad c^4$
- A **polynomial** is a monomial or a sum of monomials.
  - o Its exponents must be whole numbers.

Examples:

$$4xy + 2a \qquad 2.73 - 5x^2 \qquad -\frac{3}{a} - 6w^2y^4 + b$$

#### **Vocabulary**:

Example:  $7x^5 + 3x^4 - 9x^2 + 10$ 

- This polynomial has 4 terms.
- The **coefficients** for each term are 7, 3, and -9.
- This polynomial is written in **standard form**, meaning it is written so that the exponents go in descending order.
- Since the 7 is the coefficient of the variable with the biggest exponent, it is called the **leading coefficient**.
- This polynomial is a 5<sup>th</sup> degree polynomial because it's biggest exponent is 5.

| Common Polynomial Functions |      |               |         |  |  |  |
|-----------------------------|------|---------------|---------|--|--|--|
| Degree                      | Туре | Standard Form | Example |  |  |  |
| 0                           |      |               |         |  |  |  |
| 1                           |      |               |         |  |  |  |
| 2                           |      |               |         |  |  |  |
| 3                           |      |               |         |  |  |  |
| 4                           |      |               |         |  |  |  |

## Naming Polynomials Recap:

| Naming by <i>degree</i><br>(biggest exponent) | Naming by # of terms                                     |
|-----------------------------------------------|----------------------------------------------------------|
| $5 \rightarrow \text{constant}$               | $5x^4 \longrightarrow \text{monomial}$                   |
| $5x \longrightarrow$ linear                   | $5x^4 + x^3 \longrightarrow \text{binomial}$             |
| $5x^2 \longrightarrow \text{quadratic}$       | $5x^4 + x^3 + x^2 \longrightarrow \text{trinomial}$      |
| $5x^3 \longrightarrow \text{cubic}$           | $5x^4 + x^3 + x^2 + x \longrightarrow \text{polynomial}$ |

<u>Examples</u>: Determine whether each function is a polynomial function. If so, state its degree, type, & leading coefficient.

1)  $f(x) = -2x^3 + 8$  yes  $\rightarrow$  cubic, binomial, leading coefficient is -2

4)  $k(x) = x^2 + 3^x$  no  $\rightarrow$  the x exponent is not a whole number

### Activity!



| Degree 5 monomial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Degree 7 monomial $7x^3 - 4x^2 + 6x - 2$         | 5x + 6<br>5x + 6<br>Degree 7 binomial<br>Degree 10 monomial                    | Dedice 3 monourial                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| s <sub>x</sub> on<br>Decree 2 polynomial<br>Decree 2 bolynomial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Degree 2 binomial                                | Define the parameter $3x_5 + 12x + 4$<br>Define the parameter $3x_5 + 12x + 4$ | $\begin{array}{c} 17x^3\\ e^{x}61-e^{x}8\\ -e^{x}61-e^{x}8\\ Degree \ 6\ trinomial\\ \end{array}$ Degree 6 trinomial |
| $x + e^{x} - e^{x} + e^{x}$<br>Degree 1 monomial<br>Degree 6 binomial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $x_5 = 2x_5$<br>$= 5x_5^2$<br>Degree 5 trinomial | Dedtee 4 pinouuis<br>Isimonin 2 serged                                         | $\begin{array}{c} e^{x\xi + e^{x\xi} - e^{x\xi}} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$                    |
| $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | Degree 8 monomial $x + e_{x,7} - e_{x,21}$       | Decree 4 monomial<br>Degree 4 trinomial<br>Degree 5 trinomial                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                 |