HOW Reminders

Warm-Up

Preparedness:

- Be in the classroom when the bell rings

1) Write the equation of the parabola in

- Have something to write with, a calculator, and your notebook

Engagement:

- Have your phone and computer put away
any form.
$y=2(x-3)(x-7)$

2) Why do we find regression equations for a set of data? To estimate values for missing data points.
$y=2(x-5)^{2}-8$
$y=2 x^{2}-20 x+42$

Unit 2: Mini-Review

Learning Targets:

- I can multiply two binomials.
- I can factor a polynomial.
- I can simplify single radicals.

- I can multiply 2 binomials:

What is a binomial???
A polynomial with 2 terms.

Some examples of binomials are:

$$
\begin{array}{ll}
3 x+1 & \frac{1}{4} a^{3}+0.7 w \\
5 x^{2}-6 y & -12-6.2 b
\end{array}
$$

- I can multiply 2 binomials:

$$
(2 x+3)(5 x+4)
$$

Sam's work:
$(2 x+3)(5 x+4)$
$10 x^{2}+12$

Share: TALK MATH

Padlet: https://padlet.com/abbotte2/ bs9wup6ahwwh

- I can multiply 2 binomials:

$$
\begin{aligned}
& (2 x+3)(5 x+4) \\
& =10 x^{2}+8 x+15 x+12 \\
& =10 x^{2}+23 x+12
\end{aligned}
$$

- I can multiply 2 binomials:

You try...

$$
\text { 1. } \begin{aligned}
&(3 x-7)(5 x+1) \\
&=15 x^{2}-32 x-7
\end{aligned}
$$

2. $(-4 a+8)(3 a-6)$

$$
=-12 a^{2}+48 x-48
$$

3. $(7+2 m)(-4-9 m)$
$=-28-71 m-18 m^{2}$
4. $(2 x-8)(5+10 y)$
$=10 x+20 x y-40-80 y$

- I can factor a polynomial:

What is factoring???
"un-distributing"
"un-FOILing"
Finding what to multiply together to get a given expression

Splitting an expression into a product of simpler expressions

- I can factor a polynomial:

Factoring out the Greatest Common Factor (GCF):

Finding the biggest number and variable degree that evenly divides into each term of an expression

- I can factor a polynomial:

Factoring out the Greatest Common Factor (GCF):

1) $24+40 \mathrm{~m}$

$$
8(3+5 m)
$$

$$
\text { 3) } \begin{aligned}
-100 x^{4} y^{3}-10 x^{2} y^{5}+70 x y^{6} \\
10 x y^{3}\left(-10 x^{3}-1 x y^{2}+7 y^{3}\right)
\end{aligned}
$$

2) $4 p^{2}-12 p-10$

$$
2\left(2 p^{2}-6 p-5\right)
$$

- I can factor a polynomial:

Factoring a trinomial with no GCF: What is a trinomial??
A trinomial is a polynomial with 3 terms

Some examples of trinomials are:

$$
\begin{array}{ll}
4 x^{2}-3 x+7 & \frac{6}{7} x^{3}-8 y+10 \\
-2 x^{9}+9 x^{5}-6 & 4.6 x+3.1 x y+2.7
\end{array}
$$

- I can factor a polynomial:

$$
x^{2}+7 x+10
$$

Robbie's answer:
$(x+3)(x+4)$

Maddie's answer:
$(x+5)(x+2)$

Jamie's answer:
$(x+10)(x-3)$

Think: Who is right? What did the others do wrong? share $\mathcal{E}_{\mathcal{F}}=$

Padlet:
https://padlet.com/abbotte2/ bs9wup6ahwwh

- I can factor a polynomial: You try...

1. $x^{2}+13 x+42$

$$
(x+7)(x+6)
$$

3. $x^{2}-3 x-18$

$$
(x+3)(x-6)
$$

2. $x^{2}-6 x+8$

$$
\text { 4. } x^{2}+16 x+64
$$

$$
(x-4)(x-2)
$$

$$
(x+8)(x+8)
$$

$$
(x+8)^{2}
$$

- I can factor a polynomial:

Let's pause and practice before we move on.

- I can simplify single radicals:

What is a radical?
A square root symbol.

Radical Sign (square root sign)

What does it mean to simplify a radical?
Rewrite it so the radicand has no factors that are perfect squares.

- I can simplify single radicals:

What are perfect squares?
Numbers that have a square root.

Perfect Square 4

9
100

$$
\begin{gathered}
\begin{array}{c}
\text { Why? } \\
\sqrt{4}=2 \\
\sqrt{9}=3
\end{array} \\
\sqrt{100}=10
\end{gathered}
$$

- I can simplify single radicals:

1) $\sqrt{63}$

$$
\begin{aligned}
& =\sqrt{9 \times 7} \\
& =\sqrt{9} \times \sqrt{7} \\
& =3 \times \sqrt{7} \\
& =3 \sqrt{7}
\end{aligned}
$$

Root	Perfect Square
1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100

Root	Perfect Square
11	121
12	144
13	169
14	196
15	225
16	256
17	289
18	324
19	361
20	400

- I can simplify single radicals:

$$
\text { 2) } \begin{array}{rl|l}
\sqrt{96} & \text { 2) } & \sqrt{96} \\
=\sqrt{16 \times 6} & & =\sqrt{4 \times 24} \\
=\sqrt{16} \times \sqrt{6} & & =\sqrt{4} \times \sqrt{24} \\
=4 \times \sqrt{6} & & =2 \times \sqrt{24} \\
=4 \sqrt{6} & & =2 \times \sqrt{4 \times 6} \\
& =2 \times \sqrt{4} \times \sqrt{6} \\
& =2 \times 2 \times \sqrt{6} \\
& =4 \sqrt{6}
\end{array}
$$

Root	Perfect Square
1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100

Root	Perfect Square
11	121
12	144
13	169
14	196
15	225
16	256
17	289
18	324
19	361
20	400

- I can simplify single radicals:

3) $\sqrt{288}$

Scott:

$$
\begin{aligned}
& =\sqrt{4 \times 72} \\
& =2 \sqrt{72}
\end{aligned}
$$

Kevin:
$=\sqrt{144 \times 2}$
$=12 \sqrt{2}$
Andy:
$=\sqrt{96 \times 3}$
$=48 \sqrt{3}$

Think: Who is right? What did the others do wrong?

Share:

Padlet:
https://padlet.com/abbotte2/ bs9wup6ahwwh

- I can simplify single radicals:

 You try...1) $\sqrt{125}$
$5 \sqrt{5}$
2) $\sqrt{200}$
$10 \sqrt{2}$
3) $\sqrt{32}$
$4 \sqrt{2}$
4) $\sqrt{147}$
$7 \sqrt{3}$

Next Steps...

Learning Targets:

- I can multiply two binomials.
- I can factor a polynomial.
- I can simplify single radicals.

In Padlet:
I feel confident with...

I'd like more practice with...

Padlet:
https://padlet.com/abbotte2/bs9wup6ahwwh

