HOW Reminders

• Preparedness:

- Be in the classroom when the bell rings
- Have something to write with, a calculator, and your notebook

Engagement:

 Have your phone and computer put away

Warm-Up

Factor: 1) $x^2 - 7x + 6$ (x - 1)(x - 6)

> 2) $5x^2 + 24x - 5$ (5x - 1)(x + 5)

7-1 – Measurement of Angles

Chapter 7 – Trigonometric Functions

Learning Targets:

- Find the measure of an angle in either degrees or radians.
- Find coterminal angles.

Trigonometry: "triangle measurement"

If the terminal ray lies on an axis, the angle it forms is called a quadrantal angle.

Positive angles are generated from a counterclockwise rotation.

Negative angles are generated from a clockwise rotation.

Types of measures

The *measure of an angle* is determined by the amount of rotation from the initial side to the terminal side.

One way to measure an angle is in *degrees*.

This angle is 35° .

The *measure of an angle* is determined by the amount of rotation from the initial side to the terminal side.

One way to measure an angle is in *degrees*.

This angle is 127° .

The *measure of an angle* is determined by the amount of rotation from the initial side to the terminal side.

One way to measure an angle is in *degrees*.

A full rotation is 360° .

Angles can be measured more precisely by dividing 1 degree into 60 *minutes*, and by dividing 1 minute into 60 *seconds*.

$$1' = \left(\frac{1}{60}\right)^{\circ} \longleftrightarrow 60' = 1^{\circ}$$
 $1'' = \left(\frac{1}{60}\right)' = \left(\frac{1}{3600}\right)^{\circ} \longleftrightarrow 60'' = 1'$

Examples: Convert each decimal degree measure into degrees-minutes-seconds.

1) $119.59^{\circ} = 119^{\circ} 35' 24''$ 0.59 × (60)' = 35.4' 0.4 × (60)'' = 24'' 2) $130.1775^{\circ} = 130^{\circ} 10' 39''$ 0.1775 × (60)' = 10.65' 0.65 × (60)'' = 39'' Angles can be measured more precisely by dividing 1 degree into 60 *minutes*, and by dividing 1 minute into 60 *seconds*.

$$1' = \left(\frac{1}{60}\right)^{\circ} \longleftrightarrow 60' = 1^{\circ}$$
 $1'' = \left(\frac{1}{60}\right)' = \left(\frac{1}{3600}\right)^{\circ} \longleftrightarrow 60'' = 1'$

Examples: Convert each degrees-minutes-seconds into decimal degrees.

1)
$$25^{\circ}20'6'' = 25^{\circ} + \left(\frac{20}{60}\right)^{\circ} + \left(\frac{6}{3600}\right)^{\circ} = 25.335^{\circ}$$

2)
$$327^{\circ}46'12'' = 327^{\circ} + \left(\frac{46}{60}\right)^{\circ} + \left(\frac{12}{3600}\right)^{\circ} = 327.77^{\circ}$$

Another way to measure an angle is in *radians*.

A *radian* is the measure of a central angle θ that intercepts an arc *s* equal in length to the radius *r* of the circle.

 $\theta = \frac{s}{r}$

 $\frac{1}{2}$ of a revolution = π radians

1 full revolution = 2π radians

$$\frac{1}{4}$$
 of a revolution $=\frac{\pi}{2}$ radians

Converting between degrees & radians

Examples: Convert the angle measurement.

1)
$$25^{\circ}$$
 $25^{\circ} \times \frac{\pi}{180^{\circ}} = 5 \times \frac{\pi}{36} = \frac{5\pi}{36}$

2)
$$103^{\circ}$$
 $103^{\circ} \times \frac{\pi}{180^{\circ}} = \frac{103\pi}{180}$

3)
$$\frac{\pi}{3}$$
 $\frac{\pi}{3} \times \frac{180^{\circ}}{\pi} = \frac{1}{1} \times \frac{60^{\circ}}{1} = 60^{\circ}$

4)
$$\frac{2\pi}{5}$$
 $\frac{2\pi}{5} \times \frac{180^{\circ}}{\pi} = \frac{2}{1} \times \frac{36^{\circ}}{1} = 72^{\circ}$

Finding Arc Length

The radian measure formula below can be used to find an arc length salong a circle whose radius is r and central angle is θ .

$$s = r\theta$$

Examples: Find the arc length given its central angle measure and radius. $s = r\theta$

1)
$$r = 6in, \theta = \frac{\pi}{5}$$
 $s = 6 \times \frac{\pi}{5} = \frac{6\pi}{5} \approx 3.77in$

2)
$$r = 3.2$$
in, $\theta = 44^{\circ}$ $44^{\circ} \times \frac{\pi}{180^{\circ}} = 11 \times \frac{\pi}{45} = \frac{11\pi}{45}$

$$s = 3.2 \times \frac{11\pi}{45} = \frac{35.2\pi}{45} \approx 2.46$$
in

Two angles are *coterminal* if they have the same initial and terminal sides.

Practice Problems

Pages 261-262

#1, 2, 5, 6, 9, 11, 13, 17, 21, 23, 25