## HOW Reminders

- Preparedness:
- Be in the classroom when the bell rings
- Have something to write with, a calculator, and your notebook


## Engagement:

- Have your phone and computer put away


## Warm-Up

Factor:

$$
\begin{aligned}
& \text { 1) } x^{2}-7 x+6 \\
& (x-1)(x-6) \\
& \text { 2) } 5 x^{2}+24 x-5 \\
& (5 x-1)(x+5)
\end{aligned}
$$

# 7-1 - Measurement of Angles 

Chapter 7 - Trigonometric Functions

## Learning Targets:

- Find the measure of an angle in either degrees or radians.
- Find coterminal angles.

Trigonometry: "triangle measurement"


If the terminal ray lies on an axis, the angle it forms is called a quadrantal angle.

Standard Position


Types of measures
Positive angles are generated from a counterclockwise rotation.

Negative angles are generated from a clockwise rotation.

Positive Angle

$225^{\circ}$

Negative Angle




The measure of an angle is determined by the amount of rotation from the initial side to the terminal side.

One way to measure an angle is in degrees.


This angle is $35^{\circ}$.

The measure of an angle is determined by the amount of rotation from the initial side to the terminal side.

One way to measure an angle is in degrees.


This angle is $127^{\circ}$.

The measure of an angle is determined by the amount of rotation from the initial side to the terminal side.

One way to measure an angle is in degrees.

A full rotation is $360^{\circ}$.


Angles can be measured more precisely by dividing 1 degree into 60 minutes, and by dividing 1 minute into 60 seconds.

$$
1^{\prime}=\left(\frac{1}{60}\right)^{\circ} \longleftrightarrow 60^{\prime}=1^{\circ} \quad 1^{\prime \prime}=\left(\frac{1}{60}\right)^{\prime}=\left(\frac{1}{3600}\right)^{\circ} \longleftrightarrow 60^{\prime \prime}=1^{\prime}
$$

Examples: Convert each decimal degree measure into degrees-minutes-seconds.

$$
\begin{array}{ll}
\text { 1) } 119.59^{\circ}=119^{\circ} 35^{\prime} 24^{\prime \prime} & 0.59 \times(60)^{\prime}=35.4^{\prime} \\
& 0.4 \times(60)^{\prime \prime}=24 \prime \prime \\
\text { 2) } 130.1775^{\circ}=\underline{130}^{\circ} \underline{10}^{\prime} \underline{39}{ }^{\prime \prime} & 0.1775 \times(60)^{\prime}=10.65^{\prime} \\
& 0.65 \times(60)^{\prime \prime}=39^{\prime \prime}
\end{array}
$$

Angles can be measured more precisely by dividing 1 degree into 60 minutes, and by dividing 1 minute into 60 seconds.

$$
1^{\prime}=\left(\frac{1}{60}\right)^{\circ} \longleftrightarrow 60^{\prime}=1^{\circ} \quad 1^{\prime \prime}=\left(\frac{1}{60}\right)^{\prime}=\left(\frac{1}{3600}\right)^{\circ} \longleftrightarrow 60^{\prime \prime}=1^{\prime}
$$

Examples: Convert each degrees-minutes-seconds into decimal degrees.

1) $25^{\circ} 20^{\prime} 6^{\prime \prime}=25^{\circ}+\left(\frac{20}{60}\right)^{\circ}+\left(\frac{6}{3600}\right)^{\circ}=25.335^{\circ}$
2) $327^{\circ} 46^{\prime} 12^{\prime \prime}=327^{\circ}+\left(\frac{46}{60}\right)^{\circ}+\left(\frac{12}{3600}\right)^{\circ}=327.77^{\circ}$

Another way to measure an angle is in radians.

A radian is the measure of a central angle $\theta$ that intercepts an arc $s$ equal in length to the radius $r$ of the circle.

$$
\boldsymbol{\theta}=\frac{\boldsymbol{s}}{\boldsymbol{r}}
$$


$\frac{1}{2}$ of a revolution $=\pi$ radians

1 full revolution $=2 \pi$ radians
$\frac{1}{4}$ of a revolution $=\frac{\pi}{2}$ radians




## Converting between degrees \& radians

To convert from degrees to radians:
Degree $\times \frac{\pi}{180^{\circ}}$
Radian $\times \frac{180^{\circ}}{\pi}$

Examples: Convert the angle measurement.

1) $25^{\circ} \quad 25^{\circ} \times \frac{\pi}{180^{\circ}}=5 \times \frac{\pi}{36}=\frac{5 \pi}{36}$
2) $103^{\circ} \quad 103^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{103 \pi}{180}$
3) $\frac{\pi}{3} \quad \frac{\pi}{3} \times \frac{180^{\circ}}{\pi}=\frac{1}{1} \times \frac{60^{\circ}}{1}=60^{\circ}$
4) $\frac{2 \pi}{5} \quad \frac{2 \pi}{5} \times \frac{180^{\circ}}{\pi}=\frac{2}{1} \times \frac{36^{\circ}}{1}=72^{\circ}$

## Finding Arc Length

The radian measure formula below can be used to find an arc length $s$ along a circle whose radius is $r$ and central angle is $\theta$.

$$
s=r \theta
$$



Examples: Find the arc length given its central angle measure and radius.

$$
s=r \theta
$$

1) $r=6 \mathrm{in}, \theta=\frac{\pi}{5}$

$$
s=6 \times \frac{\pi}{5}=\frac{6 \pi}{5} \approx 3.77 \mathrm{in}
$$

2) $r=3.2 \mathrm{in}, \theta=44^{\circ}$

$$
\begin{aligned}
& 44^{\circ} \times \frac{\pi}{180^{\circ}}=11 \times \frac{\pi}{45}=\frac{11 \pi}{45} \\
& s=3.2 \times \frac{11 \pi}{45}=\frac{35.2 \pi}{45} \approx 2.46 \mathrm{in}
\end{aligned}
$$

Two angles are coterminal if they have the same initial and terminal sides.


## Examples: Find two coterminal angles. Inteactive unticirce

1) $20^{\circ} 20^{\circ}-360^{\circ}=-340^{\circ}$

$$
20^{\circ}+360^{\circ}=380^{\circ}
$$

2) $120^{\circ} \quad 120^{\circ}-360^{\circ}=-240^{\circ}$
$120^{\circ}+360^{\circ}=480^{\circ}$
3) $-40^{\circ}-40^{\circ}+360^{\circ}=320^{\circ}$
$-40^{\circ}-360^{\circ}=-400^{\circ}$


Examples: Find a coterminal angle.
4) $\pi \quad \pi-2 \pi=-\pi$
5) $\frac{\pi}{4} \quad \frac{\pi}{4}-2 \pi=\frac{\pi}{4}-\frac{8 \pi}{4}=-\frac{7 \pi}{4}$
6) $\frac{7 \pi}{6} \quad \frac{7 \pi}{6}-2 \pi=\frac{7 \pi}{6}-\frac{12 \pi}{6}=-\frac{5 \pi}{6}$


## Practice Problems

Pages 261-262
\#1, 2, 5, 6, 9, 11, 13, 17, 21, 23, 25

