Unit 6

Chapter 13
Sequences, Series, \& Limits

$13-1,13-2, \& 13-6$

Arithmetic \& Geometric Sequences, Recursive Definitions, \& Sigma Notation

Definition of Sequence

In math, the word sequence means that a collection is listed in a specific order, so it has a first member, second member, and so on.

These "members" of the sequence are called terms.
The function's...

$$
\begin{aligned}
& \text { first term }=f(1)=a_{1} \\
& \text { second term }=f(2)=a_{2} \\
& \text { third term }=f(3)=a_{3} \quad n^{\text {th }} \text { term }=f(n)=a_{n}
\end{aligned}
$$

Definition of Sequence

- The function values $a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots$ are the terms of the sequence.
- An infinite sequence is a function whose domain is the set of positive integers.
- If the domain of the function consists of the first n positive integers only, the sequence is a finite sequence.
- In an arithmetic sequence, each term has a common difference (d).

$$
\text { Example: } 1,6,11,16,21,26, \ldots \quad d=5
$$

- In a geometric sequence, each term has a common ratio (r).

Example: 3, 12, 48, 192, ... $\quad r=4$

Explicit Formula

Because listing out just the first few terms of a sequence isn't enough to define the sequence, a formula must be provided.

An explicit formula allows you to quickly find the $n^{\text {th }}$ term of the sequence without knowing any of the terms.

Examples:

$$
a_{n}=3 n-2 \quad a_{n}=3+(-1)^{n} \quad a_{n}=\frac{(-1)^{n}}{2 n-1}
$$

Example 1:

Find the first four terms of the sequences given by:
a) $a_{n}=3 n-2$
$1^{\text {st }}$ term: $a_{1}=3(1)-2=1$
$2^{\text {nd }}$ term: $a_{2}=3(2)-2=4$
$3^{\text {rd }}$ term: $a_{3}=3(3)-2=7$
$4^{\text {th }}$ term: $a_{4}=3(4)-2=10$
Is this sequence arithmetic, geometric, or neither?
arithmetic: the common difference is 3

Example 1:

Find the first four terms of the sequences given by:
b) $a_{n}=3+(-1)^{n}$
$1^{\text {st }}$ term: $a_{1}=3+(-1)^{1}=2$
$2^{\text {nd }}$ term: $a_{2}=3+(-1)^{2}=4$
$3^{\text {rd }}$ term: $a_{3}=3+(-1)^{3}=2$
$4^{\text {th }}$ term: $a_{4}=3+(-1)^{4}=4$

Is this sequence arithmetic, geometric, or neither?
neither

Example 2:

Find the first five terms of the sequence given by $a_{n}=\frac{(-1)^{n}}{2 n-1}$

$$
\begin{array}{ll}
a_{1}=\frac{(-1)^{1}}{2(1)-1}=-1 \\
a_{2}=\frac{(-1)^{2}}{2(2)-1}=\frac{1}{3} & a_{4}=\frac{(-1)^{4}}{2(4)-1}=\frac{1}{7} \\
a_{3}=\frac{(-1)^{3}}{2(3)-1}=-\frac{1}{5} & a_{5}=\frac{(-1)^{5}}{2(5)-1}=-\frac{1}{9}
\end{array}
$$

Recursive Formula

A recursive formula requires you to be given one or more of the first few terms. All other terms of the sequence are defined using previous terms.

$$
\left\{\begin{array}{l}
a_{1}=\text { first term } \\
a_{n}=a_{n-1} \text { math stuff }
\end{array}\right.
$$

Example 4:

Find the first four terms for the sequence: $\left\{\begin{array}{l}a_{1}=-3 \\ a_{n}=a_{n-1} \times 3 \text { where } n \geq 2\end{array}\right.$

$$
-3,-9,-27,-81
$$

Example 5:

Find the first four terms for the sequence: $\left\{\begin{array}{l}a_{1}=-3 \\ a_{n}=a_{n-1}+n \text { where } n \geq 2\end{array}\right.$

$$
-3,-1,2,6
$$

Example 6: Find d and the explicit and recursive formulas for each arithmetic sequence.

$7,11,15,19, \ldots$

$$
d=4
$$

Explicit: $a_{n}=4 n+3$

Recursive: $\left\{\begin{array}{l}a_{1}=7 \\ a_{n}=a_{n-1}+4\end{array}\right.$

Example 7: Find d and the explicit and recursive formulas for each arithmetic sequence.

$2,-3,-8,-13, \ldots$

$$
d=-5
$$

Explicit: $a_{n}=-5 n+7$

Recursive: $\left\{\begin{array}{l}a_{1}=2 \\ a_{n}=a_{n-1}-5\end{array}\right.$

Example 8: $\begin{aligned} & \text { Find } d \text { and the explicit and recursive formulas for each } \\ & \text { arithmetic sequence. }\end{aligned}$

$$
\begin{aligned}
& 1, \frac{5}{4}, \frac{3}{2}, \frac{7}{4}, \ldots \longrightarrow \frac{4}{4}, \frac{5}{4}, \frac{6}{4}, \frac{7}{4}, \ldots \\
& d=\frac{1}{4} \\
& \quad \text { Explicit: } a_{n}=\frac{1}{4} n+\frac{3}{4}
\end{aligned}
$$

Recursive:

$$
\left\{\begin{array}{l}
a_{1}=1 \\
a_{n}=a_{n-1}+\frac{1}{4}
\end{array}\right.
$$

Example 9: Find r and the explicit and recursive formulas for each geometric sequence.

$2,4,8,16, \ldots$

$$
r=2
$$

Explicit: $a_{n}=2^{n-1} \times 2$

Recursive: $\left\{\begin{array}{l}a_{1}=2 \\ a_{n}=a_{n-1} \times 2\end{array}\right.$

Example 10: Find r and the explicit and recursive formulas for each geometric sequence.

$12,36,108,324, \ldots$

$$
r=3
$$

Explicit: $a_{n}=3^{n-1} \times 12$

Recursive: $\left\{\begin{array}{l}a_{1}=12 \\ a_{n}=a_{n-1} \times 3\end{array}\right.$

Example 11: Find r and the explicit and recursive formulas for each geometric sequence.

$$
-\frac{1}{3}, \frac{1}{9},-\frac{1}{27}, \frac{1}{81}, \ldots
$$

$r=-\frac{1}{3}$
Explicit: $a_{n}=-\frac{1}{3}^{n-1} \times-\frac{1}{3}$
Recursive: $\left\{\begin{array}{l}a_{1}=-\frac{1}{3} \\ a_{n}=a_{n-1} \times-\frac{1}{3}\end{array}\right.$

Now you try...

The Fibonacci Sequence

$$
a_{1}=1, \quad a_{2}=1, a_{n}=a_{n-2}+a_{n-1}, \text { where } n \geq 3
$$

Factorials

If n is a positive integer, n factorial is defined as:

$$
n!=n *(n-1) *(n-2) * . . * 1
$$

Examples:

$$
\begin{aligned}
& 5!=5 * 4 * 3 * 2 * 1 \\
& 9!=9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
\end{aligned}
$$

Factorials

If n is a positive integer, n factorial is defined as:

$$
n!=n *(n-1) *(n-2) * \ldots * 1
$$

As a special case, zero factorial is defined as $0!=1$

Note that

$$
\begin{aligned}
& 2 n!=2(n!)=2(1 * 2 * 3 * \ldots * n) \\
& (2 n)!=(1 * 2 * 3 * \ldots * 2 n)
\end{aligned}
$$

Example 12

Find \& plot the first 5 terms of the sequence given by $a_{n}=\frac{2^{(n-1)}}{(n-1)!}$
$a_{1}=\frac{2^{(1-1)}}{(1-1)!}=\frac{2^{0}}{0!}=\frac{1}{1}=1$

$$
a_{4}=\frac{2^{(4-1)}}{(4-1)!}=\frac{2^{3}}{3!}=\frac{8}{6}=\frac{4}{3}
$$

$a_{2}=\frac{2^{(2-1)}}{(2-1)!}=\frac{2^{1}}{1!}=\frac{2}{1}=2$

$$
a_{5}=\frac{2^{(5-1)}}{(5-1)!}=\frac{2^{4}}{4!}=\frac{16}{24}=\frac{2}{3}
$$

$a_{3}=\frac{2^{(3-1)}}{(3-1)!}=\frac{2^{2}}{2!}=\frac{4}{2}=2$

Example 13

Evaluate each factorial expression without a calculator:
a) $\frac{8!}{2!* 6!}=\frac{8 * 7 * 6 * 5 * 4 * 3 * 2 * 1}{2 * 1 * 6 * 5 * 4 * 3 * 2 * 1}=\frac{56}{2}=28$
b) $\frac{2!* 6!}{3!* 5!}=\frac{2 * 1 * 6 * 5 * 4 * 3 * 2 * 1}{3 * 2 * 1 * 5 * 4 * 3 * 2 * 1}=\frac{6}{3}=2$
c) $\frac{n!}{(n-1)!}=\frac{n *(n-1) *(n-2) *(n-3) * \ldots}{(n-1) *(n-2) *(n-3) * \ldots}=n$

Summation Notation

Capital sigma

lower-case sigma

Summation Notation

The sum of the first n terms of a sequence is represented by

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

Where i is called the index of summation, n is the upper limit of summation, and 1 is the lower limit of summation.

Example 1

Find each sum.
a) $\sum_{i=1}^{5} 3 i=3(1)+3(2)+3(3)+3(4)+3(5)=45$
b) $\sum_{k=3}^{6}\left(1+k^{2}\right)=\left(1+3^{2}\right)+\left(1+4^{2}\right)+\left(1+5^{2}\right)+\left(1+6^{2}\right)=90$
c) $\sum_{i=0}^{8} \frac{1}{i!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!} \approx 2.71828$

Practice:

Page 621-622 (in other book)
\#2-10 evens, 25-28, 37-40, 41, 42, 44, 46, 55-58, 64-70 evens, 71-79 odds

